Time-dependent seismic resilience analysis of RC bridge piers in chloride service environments
CSTR:
Author:
Affiliation:

(College of Civil Engineering, Tongji University, Shanghai 200092, China)

Clc Number:

TU375

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To reveal the failure patterns considering time-dependent seismic resilience of bridge piers under zonal corrosion conditions throughout their life cycle, this study examines the time-varying degradation of key material properties, including rebar cross-sectional area, yield strength, and concrete compressive strength, under different corrosion environments and processes. Finite element models of zonally corroded piers were then established based on these computational results, and incremental dynamic analysis (IDA) was applied to obtain pier-top displacement responses. A seismic vulnerability model was constructed using a probabilistic demand model and damage threshold values. Furthermore, through Pushover analysis, the pre-earthquake time-dependent performance indicator was defined by the deterioration of pier seismic capacity over service time. The post-earthquake performance indicators were characterized by quantifying the instantaneous functional loss of the pier caused by seismic actions and subsequent recovery. Accordingly, a full life-cycle seismic resilience calculation model was proposed for piers, considering the partitioned corrosion environment. The results show that the corrosion rate of rebar in the splash zone is considerably higher than that in the underwater and atmospheric zones. Moreover, resilience degradation value of the bridge pier over a service period of 20 to 50 years is approximately twice that of the degradation value observed over 50 to 80 years. Thus, during the early service phase of piers, decision-makers can propose reasonable pre-earthquake reinforcement measures based on actual conditions to enhance seismic resilience.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 26,2024
  • Revised:
  • Adopted:
  • Online: March 26,2025
  • Published:
Article QR Code