上海 65 m 射电望远镜地震响应分析

钱宏亮,刘 岩,范 峰

(哈尔滨工业大学 土木工程学院,150090 哈尔滨,liuyan_841114@126.com)

摘 要:为掌握上海65m射电望远镜结构抗震性能,首先依据其建设场地条件,在WI度抗震设防烈度下,运 用时程分析法对初步设计方案中天线结构的安全性能进行分析;随后分别给出结构在多遇地震、多遇地震与 静力组合以及罕遇地震作用下的关键力学响应指标.结果表明:在多遇地震与静力组合工况下,发现了结构 的薄弱环节——背架以及俯仰结构有若干杆件进入塑性;在罕遇地震作用下,3条地震动中人工合成地震动 对结构影响最大,并且在3条地震动作用下,结构均未发生失稳倒塌.后对初步设计方案进行了局部改进,选 取最不利工况模型(俯仰角为5°的计算模型)进行WII度抗震设防烈度下的多遇地震响应分析,结果表明所有 杆件应力均满足设计要求.

关键词:射电望远镜;多遇地震;时程;抗震设防烈度 **中图分类号:**TU311.3;TU352.1+1 **文献标志码:**A **文章编号:**0367-6234(2011)12-0007-06

Analysis of seismic response to Shanghai 65 m radio telescope

QIAN Hong-liang, LIU Yan, FAN Feng

 $(School of Civil Engineering, Harbin Institute of Technology, 150090 \ Harbin, China, \ liuyan_841114@\,126.com)$

Abstract: To master the aseismic ability of Shanghai 65m radio telescope structure, according to the information of site conditions, the safety properties of antenna structure in the initial design was analyzed under activities of frequent and rare earthquake by using time-history method when aseismic fortification intensity is \mathbb{VI} . Subsequently mechanical responsive targets which are crucial to the structure under activities of frequent earthquake, frequent earthquake combined with static unitized load mode and infrequent earthquake were given. The results show that the weaknesses of the structure (plastic deform appears in some bars) are found under activities of frequent earthquake combined with static unitized load mode. Under activities of infrequent earthquake, artificial ground motion produces the most intensive effect on the structure. To every kind of different pitching angle model the antenna structure does not break down under the activities of 3 kinds of infrequent earthquake. After some modifications to the initial design, and choosing the most disadvantageous model (its pitching angle is 5°), the analysis results under activities of frequent earthquake show that all targets of all bars meet the corresponding requirements of specifications when aseismic fortification intensity is \mathbb{W} . **Key words**; radio telescope; frequent earthquake; time-history; aseismic fortification intensity

为满足嫦娥探月工程二期、三期的 VLBI 测 定轨、定位以及各项深空探测任务,由中国科学 院、上海市政府和探月工程共同出资建造的65 m

收稿日期:2010-10-06.

基金项目:国家自然科学基金资助项目(51008090); 中国博士后科学基金资助项目(2080430915).
作者简介:钱宏亮(1977—)男,副教授;
范 峰(1971—)男,教授,博士生导师. 口径大型射电望远镜系统已正式动工,预计 2012 年底完成工程建设,2015年全面完工,届时将成 为亚洲最大、总体性能位列全球第 3、国际先进的 全方位可转动大型射电望远镜^[1-2].

该望远镜结构属于大型精密电子机械设备, 造价巨额.为了提高它在地震破坏中的生存能力, 有必要对其地震响应进行分析.目的在于:获得结 构的节点位移响应时间历程,校核各构件强度,寻 找结构的危险部位和薄弱环节,从而为天线结构 设计和抗震措施提供有价值的参考数据.

第1部分以三水准原则为控制目标,运用时 程分析法,利用大型通用有限元分析软件 AN-SYS10.0编制了相应的程序模块,对天线结构在 小震和大震作用下的安全性能进行分析,分别给 出了结构在多遇地震、多遇地震与静力组合以及 罕遇地震作用下的关键力学响应指标,评估了结 构在地震作用下的安全性能;第2部分针对中国 电子科技集团 54 研究所局部变更后的设计方案, 选取最不利工况模型(俯仰角为 5°模型)进行了 设防烈度为¹¹ [3].

1 天线结构地震作用分析方法

1.1 分析方法

天线结构地震作用分析采用时程分析法进行 计算,根据规范^[4]5.1.2款第3条原则选用2条 实际强震记录地震动和一组人工模拟地震动(人 工合成地震动)进行时程分析,天然地震记录的 地震影响系数曲线与人工合成地震动地震影响系 数曲线在统计意义上相符.材料属性:多遇地震中 钢材料模型采用各向同性的线弹性材料;罕遇地 震中钢材料模型为双线性模型,屈服后弹性模量 为初始弹性模量的 2%.阻尼比:该天线为钢结构, 阻尼比为 0.02;重力荷载代表值 $G_{e:1}$.0×恒荷载 +0.5×雪荷载.三向地震作用:时程分析法计算地 震作用时,地震动采用三向输入,三向加速度峰值 取 $X_{:}$ $Y_{:}$ Z = 1.00; 0.85; 0.65.

1.2 地震动选取

地震动选取依据^[4-5]:65 m 射电望远镜系统 抗震验算按照设防烈度Ⅲ度(0.10g)进行;建筑 场地类别为Ⅳ类;结构基频1.39 Hz,基本周期为 0.72 s,属于中周期范围.依据以上条件及原则, 最终选择地震动(实测地震记录已调幅)如图 1 所示,图 2 为 3 条地震动对应的反应谱曲线.

图 2 3 条地震动反应谱曲线

2 计算模型及分析工况

地震分析采用的计算模型分别为:5°、45°、 90°俯仰角模型.3 条地震动为 Western Washington 地震动、Westmoreland CA 地震动、人工合成地震 动,其加速度幅值均为 35 gal(多遇)、220 gal(罕 遇).各俯仰角度模型在多遇地震与静力组合下的 荷载工况均为 16 种,具体组合项及系数见表 1 (表中地震效应为所有地震动效应的包络值).

3 WI度多遇地震作用分析

对 65 m 天线结构模型进行了俯仰角为 5°、 45°、90°共 3 个状态的多遇地震分析^[6],并将分析 结果与静力荷载工况进行组合,分别给出相应计 算结果:位移响应、应力响应等.限于篇幅,以下仅 详细给出俯仰角为 90°时结构在多遇地震作用下 以及和静力荷载工况组合作用下的响应结果,其 他状态只给出各响应结果的统计值.

表1 多遇地震作用参与的工况组合(分项系数×组合系数)

序号	组合	恒荷载	雪荷载	地震荷载	风荷载
1	恒+雪+地震1	1.2×1.0	1.4×0.7	1.3×1.0	
2	恒+雪+地震 1+风 1	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
3	恒+雪+地震 1+风 2	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
4	恒+雪+地震 1+风 3	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
5	恒+雪+地震2	1.2×1.0	1.4×0.7	1.3×1.0	
6	恒+雪+地震 2+风 1	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
7	恒+雪+地震 2+风 2	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
8	恒+雪+地震 2+风 3	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
9	恒+雪+地震3	1.2×1.0	1.4×0.7	1.3×1.0	
10	恒+雪+地震 3+风 1	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
11	恒+雪+地震 3+风 2	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
12	恒+雪+地震 3+风 3	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
13	恒+雪+地震4	1.2×1.0	1.4×0.7	1.3×1.0	
14	恒+雪+地震 4+风 1	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
15	恒+雪+地震 4+风 2	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2
16	恒+雪+地震 4+风 3	1.2×1.0	1.4×0.7	1.3×1.0	1.4×0.2

3.1 时程分析结果

取 Western Washington、Westmoreland CA 以及 人工合成地震动多遇地震作用下结构响应(内力、 位移)的平均值,作为时程分析计算结果.表 2 为 多遇地震动下不同俯仰角度模型结果统计值.可 以看出多遇地震作用下,除方位座架部分杆件应 力不满足要求,结构的整体刚度和强度均满足规 范要求.

表 2 多遇地震时程分析响应统计值

俯仰角	背架结构 最大应力/MPa	方位座架 最大应力/MPa	$X_{\rm max}$ /m	X_{\min} /m	$Y_{\rm max}$ /m	$Y_{\rm min}/{\rm m}$	$Z_{\rm max}$ /m	$Z_{\rm min}$ /m
90°	96.75	179(4)	0.038 4	-0.039 2	0.032 0	-0.025 2	0.020 1	-0.021 5
45°	172.0	187(4)	0.038 8	-0.042 2	0.030 4	-0.030 2	0.024 3	-0.019 0
<u> </u>	83.85	185(3)	0.020 4	-0.020 7	0.027 2	-0.022 2	0.022 0	-0.019 9

注:响应值不含超限杆件,括号内的数字代表超限杆件数.

3.2 多遇地震与静力响应组合

取3条地震动时程分析结果的平均值与静力 荷载响应进行组合,表3为不同俯仰角模型在多 遇地震与静力组合后的响应结果统计值.当俯仰 角为90°和45°时,天线结构在多遇地震与静力组 合工况下,背架结构杆件应力满足要求,部分方位 座架杆件应力不满足要求,俯仰角 5°时模型有少量背架结构杆件超限,方位座架也有部分杆件超限,最终背架结构不合格杆件 12 根,方位座架不合格杆件 8 根,位置见图 3、4.

表 3 多遇地震与静力组合响应统计值

俯仰角	背架结构 最大应力/MPa	方位座架 最大应力/MPa	$X_{\rm max}$ /m	$X_{\rm min}$ /m	$Y_{\rm max}$ /m	$Y_{\rm min}$ /m	$Z_{\rm max}$ /m	Z_{\min} /m
90°	189.2	271(4)	0.049 6	-0.093 9	0.064 2	-0.163 8	0.113 3	-0.174 6
45°	221.5	285(4)	0.050 9	-0.080 8	0.063 5	-0.079 9	0.003 4	-0.102 4
5°	270.9(12)	306(6)	0.032 5	-0.057 3	0.086 4	-0.078 8	0.005 3	-0.104 6

4 ₩度罕遇地震作用分析

罕遇地震对俯仰角 5°、45°、90°共 3 个状态模型进行分析.图 5 仅分别给出俯仰角为 90°时天线结构在人工合成地震动罕遇地震作用下,节点 X

向、Y向及Z向位移最大点的相应位移时程,而在 另外2条地震动作用下位移最大点的时程以及其 他俯仰角模型的罕遇地震响应只给出统计值.表4 统计出不同地震动罕遇地震作用下不同俯仰角模 型节点X、Y及Z向位移最值.表5统计出不同俯

仰角模型在罕遇地震作用下进入塑性杆件的数量

图 3 背架结构不合格杆件位置

及其占相应结构部分杆件数量的百分比.

图 4 方位座架不合格杆件位置

图 5 人工合成地震动罕遇地震 90°模型三向最大位移点时程曲线

表 4 罕遇地震作用下节点 X、Y、Z 向位移最值

俯仰角	地震动	$X_{\rm max}/{\rm m}$	X_{\min} / \mathbf{m}	$Y_{\rm max}/{\rm m}$	Y_{\min} /m	$Z_{\rm max}$ /m	Z_{\min} /m
	Western Washington	0.053 5	-0.057 1	0.033 9	-0.051 8	0.011 0	-0.084 0
90°	Westmoreland CA	0.106 4	-0.104 6	0.106 9	-0.123 8	0.063 5	-0.140 1
	人工合成	0.132 2	-0.128 4	0.184 0	-0.188 0	0.121 1	-0.189 3
45°	Western Washington	0.066 9	-0.075 1	0.033 7	-0.077 8	0.011 5	-0.097 2
	Westmoreland CA	0.155 0	-0.156 6	0.102 4	-0.143 3	0.035 1	-0.161 3
	人工合成	0.206 7	-0.225 4	0.196 7	-0.222 7	0.106 3	-0.213 7
5°	Western Washington	0.075 2	-0.092 0	0.065 9	-0.074 2	0.011 5	-0.119 1
	Westmoreland CA	0.150 0	-0.152 6	0.104 0	-0.140 3	0.022 3	-0.160 7
	人工合成	0.234 3	-0.224 6	0.165 6	-0.224 0	0.081 7	-0.217 8

表 5 罕遇地震作用下进入塑性构件统计表

-			
不	同俯仰角模型	塑性杆件数量	百分比/%
	背架结构	2	0.03
90*	方位座架	18	5.10
	背架结构	1	0.02
45°	方位座架	20	5.60
5°	背架结构	5	0.07
	方位座架	19	5.40

由表 4、5 可知,3 条地震动中人工合成地震动 对结构影响最大,当俯仰角为 90°时, X 向位移最 值为 0.132 2 m, Y 向位移最值为-0.188 0 m, Z 向位移最值为-0.189 3 m,背架结构有 2 根杆件 进入塑性,占背架结构杆件总数的 0.03%,方位座 架有 18 根杆件进入塑性,占方位座架杆件总数的 5.1%;俯仰角 45°时, X 向位移最值0.225 4 m, - Y 向位移最值为-0.222 7 m, Z 向位移最值为-0.213 7 m,背架结构有 1 根杆件进入塑性,占背架 结构杆件总数的 0.02%,方位座架有 20 根杆件进 入塑性,占方位座架杆件总数的 5.6%;俯仰角为 5°时, X 向位移最值为 0.234 3 m, Y 向位移最值 为-0.224 0 m, Z 向位移最值为-0.217 8 m,背架 结构有 5 根杆件进入塑性,占背架结构杆件总数 的 0.07%,方位座架有 19 根杆件进入塑性,占方 位座架杆件总数的 5.4%.并且在 3 条地震动作用 下 X、Y、Z 向位移最大点的时程都收敛,未有发散 现象,表明结构均未发生失稳倒塌,满足要求,罕 遇地震作用下只有少量构件进入塑性,结构基本 弹性,满足相关控制指标.

5 局部变更后Ⅷ度多遇地震作用分析

根据建筑抗震设防分类和设防标准规定, 65 m天线结构属于甲类建筑,计算地震作用时应 高于本地区(上海)抗震设防烈度要求.所以对局 部结构变更后的 65 m 射电望远镜按照设防烈度 WI度进行多遇地震抗震验算,并将分析结果与静 力荷载工况进行组合,分别给出相应计算结果:应 力响应和位移响应.

5.1 设计变更前后对比

背架结构 Pro/e 模型变更前、后示意见图 6、 7,俯仰结构 Pro/e 模型变更前、后示意见图 8、9, 且工字钢型号由原来的 I56c 变更为 I63c^[7].其中 每幅图中左侧对应变更前,右侧对应变更后.

图 6 变更前后背架结构外圈下弦平面

图 7 变更前后背架结构外圈环拉杆和斜拉杆尺寸 5.2 计算模型及分析工况

在前述的WI度抗震设防验算分析中,由于背架结构超限情况只发生在俯仰角5°模型中,而且

在 3 种俯仰角情况下俯仰结构进入塑性最多的杆件数也是发生在俯仰角为 5°模型中.可知俯仰角 5°模型是各种模型中最为不利的,所以选取俯仰 角为 5°的模型进行 III 度抗震设防补充验算,相应 选取的 3 条地震动其加速度幅值均为 70 gal(多 遇).各俯仰角模型多遇地震与静力组合的荷载工 况及具体系数仍见表 1(表中地震效应为所有地 震动效应包络值).

图 8 变更前后 Pro/e 俯仰结构整体模型

图 9 变更前后 Pro/e 俯仰结构局部模型左视图

5.3 时程分析结果

取 Western Washington、Westmoreland CA 及人工 合成地震动多遇地震作用下结构响应(内力、位移) 平均值,作为时程分析计算结果,图 10 为相应内力平 均值云图,限于篇幅,图 11 只给出具有位移最大值的 X 向位移平均结果.表 6 为在多遇地震作用下 5°俯仰 角模型响应结果统计值.多遇地震作用下,结构的整 体刚度和强度均满足规范要求.

背架结构 方位座架最大 $X_{\rm max}$ /m X_{\min} /m $Y_{\rm max}$ /m Y_{\min} /m $Z_{\rm max}$ /m Z_{\min} /m 模型 最大应力/MPa 应力/MPa 5° 120.4 223 0.045 5 -0.04770.032 6 -0.032 1 0.024 5 -0.025 6 3.378 26.756 40.133 53.511 66.889 80.267 93.644 107. (b) X 向最小位移 (a) X 向最大位移 (a) 背架结构杆件应力云图 (b) 方位座架杆件应力云图

表 6 俯仰角 5°模型多遇地震时程分析响应

图 10 WIE 多遇地震作用下俯仰角 5°模型应力

图 11 WII度多遇地震作用下俯仰角 5°模型 X 向位移最值

5.4 多遇地震与静力响应组合

取3条地震动时程结果平均值与静力荷载响 应进行组合,限于篇幅,直接给出多遇地震与静力 组合后的俯仰角5°模型响应结果统计值,见表7.

图 12 为 5°俯仰角模型在多于地震与静力组 合下的内力响应云图,图 13 为其 Z 向位移最值响 应云图.从计算结果可知,俯仰角为 5°时,65 m 望 远镜模型在WI度多遇地震与静力组合工况下,仅 有少量背架结构杆件应力超限(共2根),见图 14. 其中超限杆件最大应力为 290.3 MPa,而该部分设 计强度为 275 MPa,超限值在 5%以内,可以接受. 而俯仰结构和方位座架杆件应力均满足要求.总 体来看整个结构所有杆件应力均满足设计要求.

背架结构 大应力/MPa	方位座架 最大应力/MPa	$X_{\rm max}$ /m	X_{\min} /m	$Y_{\rm max}$ /m	$Y_{\rm min}$ /m	$Z_{\rm max}$ /m	$Z_{ m min}$ /m
290.3	270	0.066 3	-0.092 1	0.088 2	-0.102 8	0	-0.123

表 7 俯仰角 5°模型多遇地震与静力组合响应

5	290.0	270	0.000 5
		13	ANCO
ELEMENT SOUTION STP-1 STP-1 TTR-1 TTR-1 STR-2 ST		KLOBOTACIN STR=1 STR=2 STR=2 STR=2 STR=2 STR=2 STR=2 STR=2 STR=2 STR=2	
2.15 34.161 66.172 98.	130.194 194.217 258.239 183 162.206 226.228 290.25	7 36.222 65.444 94.667	23.889 153.111 211.556 270
(a) 背架结	市构杆件应力云图	(b) 方位座架	杆件应力云图
图 12 VI	[[度多遇地震与静	力组合俯仰角	」5°模型应力
TEP-1 JUB -1 LIME-1 JE_MAX (NOAW3)	AFR 24 2010 22±17:59	875- 803-5 128-5 02-809 (Deave)	2009 121 2010 10110228
0F MX0232 MN0405		121 - 7222 171 - 7222 171 - 7222	
			SV.
04050315 - 0	270225 0180135 0090045		0088008107360197
1030 10			
(a) Z	向最大位移	(b) Z 向	

图 13 WIIE多遇地震与静力组合俯仰角 5°模型 Z 向位移最值

图 14 各工况背架结构不合格杆件位置(共2根)

6 结 论

1)在第一阶段的WI度抗震设防验算中,俯仰 角为90°和45°的天线结构在地震与静力组合工况 下,背架结构杆件应力满足要求,部分方位座架杆 件应力不满足要求,俯仰角5°时,模型有少量背架 结构和俯仰结构杆件验算超限.

2)对于WI度抗震设防验算,在罕遇地震作用下,3条地震动中人工合成地震动对结构影响最大.对每种俯仰角模型,只有少量杆件进入塑性,结构基本弹性,满足相关控制指标.并且3条地震

动作用下各俯仰角模型X、Y、Z向位移最大点的时 程都收敛,未有发散现象,表明结构均未发生失稳 倒塌,满足要求.

3)第二阶段针对五十四所修改后的模型,进行 1 使 度 抗震设防验算后,俯仰角为 5°时,天线结构 在 1 使 度 多 遇 地震 与 静力组合工况下,仅有少量 背 架结构杆件应力超限(共 2 根),其中超限杆件最 大应力为 290.3 MPa,而该部分杆件设计强度为 275 MPa,超限值在 5%以内,可以接受;而俯仰结 构和方位座架杆件应力均满足要求.总体来看整 个结构所有杆件应力均满足设计要求.

4)建议在天线结构的设计中在满足各项性能 指标前提下尽可能降低结构重心,减轻结构质量, 在天线结构的基础部分布设若干弹性支撑措施, 从而能更有效的缓解地震动对天线结构的冲击.

参考文献:

- [1] 付丽.上海65米射电望远镜天线系统结构力学分析的 核查方案[R].上海:中国科学院上海天文台,2009.
- [2] 刘国玺,郑元鹏.上海 65 米射电望远镜天线方案设 计报告[R].石家庄:中国电子科技集团公司第五十 四研究所, 2009.
- [3] 钱宏亮,刘岩.上海 65 米射电望远镜力学核查分析 结题报告[R].哈尔滨:哈尔滨工业大学空间结构研 究中心,2010.
- [4] GB50011—2010 建筑抗震设计规范[S].北京:中国建筑 工业出版社,2010.
- [5] 李颖.上海 65 米射电望远镜建设项目工程场地地震 安全性评价报告[R].上海:上海岩土工程勘察设计 研究院有限公司,2009.
- [6] 范峰,钱宏亮.上海 65 米射电望远镜天线结构分析 核查报告[R].哈尔滨:哈尔滨工业大学空间结构研 究中心, 2010.
- [7] 刘国玺.上海 65 米射电望远镜天线结构分析检查报 告建议总结[R].石家庄:中国电子科技集团公司第 五十四研究所,2010. (编辑 赵丽莹)

模型

50

最