温度均匀性对 V 形槽面黑体辐射特性的影响

王强¹,张伟¹,戴景民²,张宏³,谢蓄芬¹

(1. 哈尔滨工业大学 空间光学工程研究中心,150001 哈尔滨; 2. 哈尔滨工业大学 自动化检测与过程控制系统研究所, 150001 哈尔滨; 3. 哈尔滨理工大学 计算机科学与技术学院,150080 哈尔滨)

摘 要:为了解决同心圆 V 形槽结构面源黑体的温度不均匀性产生原因及其对辐射特性的影响等问题,提 出了基于蒙特卡洛全光路跟踪的辐射特性评估方法.首先通过与精密方法的相互比对验证了该方法的正确 性及准确程度,而后分析了温度不均匀性的产生原因及变化规律,最后对温度均匀性与辐射特性之间的影响 关系进行了研究.结果表明,槽夹角越小、槽深度越深、工作温度与环境温度差异越大,温度均匀性越差;槽 夹角和槽深度还会直接或间接的对有效发射率产生影响.作为结论,建议采用 45°或 60°槽夹角,槽深度不 宜超过 2 mm,建议附加热管技术以及保护套筒结构.

Impact of temperature nonuniformity on radiant characteristics of V-grooved surface blackbody

WANG Qiang¹, ZHANG Wei¹, DAI Jing-min², ZHANG Hong³, XIE Xu-fen¹

(1. Research Center for Space Optical Engineering, Harbin Institute of Technology, 150001 Harbin, China;

2. Dept. of Automatic Measurement and Control, Harbin Institute of Technology, 150001 Harbin, China;

3. Dept. of Computer Science and Technology, Harbin University of Science and Technology, 150080 Harbin, China)

Abstract: To understand the generation of temperature nonuniformity and its influence on effective emissivity, a radiant characteristics calculation method based on Monte Carlo (MC) full ray tracing technique for V-grooved surface blackbody is proposed. The exactitude of this method is approved by comparison with precise Bedford method, then the reason and development of temperature nonuniformity are discussed, and finally the effects of temperature nonuniformity on effective emissivity are disclosured. The results demonstrate that the temperature uniformity is deteriorated when small grooved angle, high grooved length and big temperature difference between surface temperature and environment are adopted. Further more, the grooved angle and length can exert influences on effective emissivity. It is concluded that the grooved angle of 45° of 60° and the grooved depth less than 2 mm can give a satisfied effective emissivity and temperature uniformity to general application. Better performance can be achieved when heat pipe technique and guarded sleeve are applied. **Key words**: Temperature uniformity; Monte Carlo; surface blackbody; effective emissivity; large diameter

黑体辐射源是实现红外测量的基准,真正的 黑体并不存在,但基尔霍夫证明等温密闭空腔的

收稿日期: 2011-12-15.

基金项目:哈尔滨工业大学科研创新基金资助项目(HIT. NSRIF2013);中国博士后科学基金资助项目 (20100481012). 作者简介:王强(1978—),男,讲师; 张伟(1962—),男,教授,博士生导师; 戴景民(1963—),男,教授,博士生导师.

内表面是黑体表面,所以几百年来,人们一直利用 等温密闭空腔开孔的方法来近似地模拟黑体.这 些腔式黑体的结构往往比较简单,具有较小的开 口,有效发射率一般能达0.98000~0.99999,比 较适合用于高温应用的场合.而对于中低温范围, 按红外成像系统最小可分辨温差 MRTD^[1-2]灵敏 度的需要,腔式黑体就难以满足要求了.随着红外 技术的迅速发展,红外遥感、探测与成像等技术得

• 41 •

到了越来越广泛的应用;并对定标精度、分辨率提出了很高的要求,因此面源黑体的应用越来越 广泛^[3].

面源黑体除了要求具有高发射率,由于其辐 射面积大,对温度均匀性也提出了很高的要求.为 了提高有效发射率,需增加槽深度,但温度均匀性 就难以保证:定标精度对大口径的需求则更加剧 了这种温度非均匀的程度,这表明对面源黑体高 性能要求的本身就存在设计上的矛盾. 温度均匀 性取决于面源黑体的结构设计、合理的防护措施 以及实际应用条件,如果温度均匀性得不到保障, 就会对面源黑体的辐射特性产生影响.但就目前 的国内外现状来看,这方面的研究还鲜见报道,亟 需在建立适用于不同微腔结构形式面源黑体的辐 射特性评估方法基础上,研究温度非均匀性的成 因及变化规律,继而揭示温度非均匀性与辐射特 性的关系、温度非均匀性对辐射特性的影响机理 及变化规律,从而实现对面源黑体辐射特性的客 观评价. 这项工作的开展不仅直接为面源黑体的 合理设计及辐射特性评估提供理论依据,还将间 接提高遥感辐射定标精度、扩展遥感信息定量化 应用的深度和广度、以及对地观测的总体水平,具 有重要研究意义和应用价值.

1 辐射特性评估方法

1.1 正确性检验

由于对红外辐射发射率测量精度的限制,作 为红外标准辐射源,黑体的辐射特性通常是通过 理论计算得到的.对于腔式黑体,经过多年的发 展,已形成了完善的黑体空腔理论,主要包括积分 方程法和系列反射法^[4-6],二者都属于精密求解 方法.谢植^[7]等人曾证明二者的统一性,即两种 方法对腔式黑体辐射特性分析结果是一致的.由 于精密方法需要求解复杂情况表面之间的角系数 计算,显然大口径 V 形槽面源黑体是不适宜采用 精密方法求解的^[8].本文针对 V 形槽结构面源黑 体辐射源,采用对光束进行完全跟踪的 Monte Carlo(MC)方法^[9-10]实现辐射特性的评估,开展 辐射特性评估研究.

在应用 MC 方法之前,首先需要对这种方法 的正确性进行检验,以保持黑体评估理论的一致 性.以 V 形槽中心圆锥腔为对象,利用精密方程 法求解有效发射率,如图1所示.

将空腔沿长度方向分成 N 段,则腔壁可看作 由 N 个有限元圆环构成,每个有限元圆环具有相 同的局部有效发射率. 当N 足够大时,离散有限元 分析公式可近似表示为连续的积分方程求解.某有限元圆环 di 的局部有效发射率为

$$\varepsilon_{a}(i) = \varepsilon + (1 - \varepsilon) \sum_{j=1}^{N} \varepsilon_{a}(j) F_{di-dj}$$

式中 F_{di-dj} 为di对dj的角系数.为确定圆环di和圆 环dj之间的角系数 F_{di-dj} ,首先确定圆盘i与圆盘 j之间的角系数 F_{i-j} ,如图 2 所示.

图 2 圆锥空腔角系数分析

 $F_{i-j} = \left[h^2 + r_1^2 + r_2^2 - \sqrt{\left(h^2 + r_1^2 + r_2^2\right)^2 - 4r_1^2 r_2^2}\right]/2r_1^2.$

设 *F*_{di-j} 为圆环 di 和圆盘 *j* 之间的角系数, 而 *F*_{*i*-dj} 为盘 *i* 和圆环 d*j* 圆之间的角系数. 例如 *A*_{*i*}, *A*_{dj} 分别表示 *i* 处的圆盘与圆环的面积, *A*_{*j*}, *A*_{dj}分别表 示 *j* 处的圆盘与圆环的面积. 则

$$F_{i-dj} = F_{i-j} - F_{i-(j+1)}.$$

其它角系数均由角系数互换定律推算:

$$\begin{split} F_{dj-i} &= F_{i-dj} * A_j / A_{di}, \\ F_{dj-di} &= F_{dj-i} - F_{dj-(i+1)}, \\ F_{di-dj} &= F_{dj-di} * A_{dj} / A_{di}. \end{split}$$

锥顶处的有限元 d0 对其自身的角系数为

 $F_{\rm d0-d0} = 1 - \sin \omega.$

计算局部有效发射率后,圆锥空腔的有效发射率 $\varepsilon_{ap}(0)$ 可按下式计算得到:

$$\varepsilon_{aP}(0) = \sum_{i=1}^{N} \varepsilon_a(i) A_{di} F_{di-N}.$$
(1)

当应用 MC 方法分析辐射特性时,把辐射能 看作大量光束组成.每束光的发射或反射服从概 率分布,对每束光进行跟踪,直至其被吸收或射出 该槽.当发光点数足够大,该槽的有效发射率的统 计结果将收敛于其真值.当完成对表面所有 V 形 槽的模拟分析后,得到表面的有效发射率分布如

图 3 圆锥空腔 MC 光束跟踪分析

首先随机抽样产生发光点位置,发光点所在 处 O_1 与圆锥顶点O的距离为a,由于发光点均匀 分布在腔壁上,关于 a 的分布函数满足面积概率 分布

$$P(a) = \frac{\pi a^2 \sin \omega / \cos \omega^2}{A_{\text{cone}}}$$

假定辐射表面为漫反射,则发射或反射光线 的角度分布函数满足

$$P(\theta) = \frac{\int_{\phi} \int_{0}^{\theta} i \cdot dA \cdot \cos \theta \sin \theta d\theta d\varphi}{\int_{\phi} \int_{0}^{\pi/2} i \cdot dA \cdot \cos \theta \sin \theta d\theta d\varphi} = \sin^{2} \theta.$$

其中 θ 、 ϕ 由以下两式确定,r为随机数

$$\theta = \sin^{-1}\sqrt{r},$$

$$\phi = 2\pi r.$$

当确定发光点坐标 a 和光束的方向角 θ 、 ϕ 后,就可以确定该光束的方程.圆锥在坐标系 OXYZ 中的方程为

$$x^2 \tan^2 \omega = y^2 + z^2. \tag{2}$$

光束在坐标系
$$O_1X_1Y_1Z_1$$
 中的方程为

$$\begin{cases} z_1^2 = \cot^2 \theta(x_1^2 + y_1^2), \\ y_1 = x_1 \tan \omega. \end{cases}$$
(3)

坐标系 OXYZ 和 $O_1X_1Y_1Z_1$ 之间的坐标变换 为

$$\begin{cases} x = x_1 \cos \omega + z_1 \sin \omega + a, \\ z = -x_1 \sin \omega + z_2 \cos \omega - \arctan \omega \end{cases}$$
(4)

由式(2) 和(3) 求出光束与圆锥的交点坐 标,根据式(4)得其在坐标系 OXYZ 的坐标 x,判 断如x > 0 目x < l, 光束在圆锥腔内,否则射出 腔外. 如射出腔外, 腔口辐射出的总能量 E_{out} 累 积. 如仍留在腔内,判断其在入射点是否被吸收还 是被反射,如被反射,确定反射光方向,继续跟踪, 如被吸收,则产生下一发光点. 当完成对所有光束 的跟踪后,计算圆锥的有效发射率

 $\varepsilon_a(0) = \varepsilon E_{\text{out}} A_{\text{cone}} / (A_{\text{ap}} N_{\text{s}}).$ 其中 A_{cone} 与 A_{an} 分别是锥面与锥口的面积, N_s 为 光束总数.

这两种方法的评估结果如图 4 所示. 可以看 出两种方法计算结果相差非常小,计算结果十分 吻合.而每个点对应一种材料发射率状态,在如此 多情况下,如此理想的吻合程度,证明 MC 方法是 完全可行可靠的,并且 MC 方法有很大的灵活性, 可用来模拟实际表面辐射情况,适合对面辐射源 辐射表面的热辐射特性进行分析.

图 4 有效发射率计算结果比较

1.2 评估方法的建立

对于 V 形槽面源黑体的某个槽 k, 视为由两 个圆锥面-----凹形锥面 Con, 和凸形锥面 Con, 组 成,如图5所示.

图 5 同心圆 V 形槽表面

当考虑同心圆 V 形槽表面的辐射特性时,如 图6所示.

图 6 V 形槽表面光路跟踪示意

对于第 k 个 V 形槽圆环,求解有效发射率 $\varepsilon_{\rm sp}(k)$ 的方法如下:

1) 确定发光点位置. 设凹面槽 Con₁ 的面积

为 A_{con_1} ,凸面槽 Con_2 的面积 A_{con_2} ,通过选随机数 r_s 确定发光点是在凹面 Con_1 还是在凸面 Con_2 上.当 $r_s \leq A_{con_1}/(A_{con_1} + A_{con_2})$ 时,发光点在 Con_1 上,反 之则在 Con_2 上.下一步按面积概率,通过选随机 数 r_s 确定其位置

$$a = L[k] - l + \frac{r_x(2L[k] - l) + 3l - 2L[k]}{2}$$

同理,如发光点 *i* 在圆锥 Con₂ 槽面上,其位 置为

$$b = L_a[k] - l + \frac{r_x(2L_a[k] - l) + 3l - 2L_a[k]}{2}.$$

 当发光点在 Con₁上,确定光线方向(θ, φ),光束 *i* 相对于坐标系 O₁X₁Y₁Z₁ 方程

$$\begin{cases} z_1^2 = \arctan^2 \theta(x_1^2 + y_1^2), \\ y_1 = x_1 \tan \varphi. \end{cases}$$
(5)

判其与 Con₂ 是否相交, Con₂ 相对于坐标系 O,X,Y,Z, 的圆锥方程为

$$x_2^2 \tan^2 \omega = y_2^2 + z_2^2.$$
 (6)

坐标系 $O_1X_1Y_1Z_1$ 与 $O_2X_2Y_2Z_2$ 间的坐标变 换为

$$\begin{cases} x_2 = x_1 \cos \omega + z_1 \sin \omega - b, \\ \vdots \end{cases}$$
(7)

$$t_{z_2} = -x_1 \sin \omega + z_1 \cos \omega - \arctan \omega.$$

由式(5)、(6)得交点方程
$$Ax_1^2 + Bx_1 + C = 0.$$
 (8)

且.

 $A = \arctan^{2}\theta(\tan^{2}\omega - 1)/\cos^{2}\varphi + 2\arctan \theta \tan \omega/\cos \varphi - \tan^{2}\varphi,$

 $B = -2b\tan\omega [2\sin\omega + \arctan\theta(\sin\omega\tan\omega - \cos\omega)/\cos\varphi],$

$$C = \tan^2 \omega (b^2 - a^2).$$

解方程(8)得两根 x_{11} 、 x_{12} ,取合理值,作为 x_1 ;由式(7)变换成 x_2 .当 $L[k] - a - b \ge x_2 \ge$ L[k] - l - a - b,光线交于凸形槽面 Con₂上.之 后判断光线在此交点被吸收还是被反射.当 $r_e \ge e$ 被反射,记下其坐标,确定其反射方向 (θ, φ) ,转至步骤3);如被吸收则转至步骤4).若 光束不与Con₂相交,则判其与凹槽面 Con₁是否相 交,与上述过程相似.如与 Con₁相交,如被反射, 记下其位置坐标,确定其反射方向(θ, φ),返回步 骤2),反之如被吸收,则跳转至步骤4).如与 Con₁也不相交,光线射出V形槽,将此光束能量累 加至总溢出能量 $E_{out}[k]$,跳转至步骤4).

3)当发光点在凸形槽面 Con₂上,光线仅可 能与 Con₁相交,跟踪过程与步骤 2)相似.交点坐 标相对于坐标系 OXYZ 为:x = x₁cos ω + z₁sin ω + $a, \exists L[k] \ge x \ge L[k] - l, 光线与 Con₁ 相交, 如$ $反射, 产生反射光方向(<math>\theta, \varphi$), 转至步骤 2), 反 之则转至步骤 4). 如不与 Con₁ 相交, 光线射出该 V 形槽, 总溢出能量 $E_{out}[k]$ 累加,继续至下一步.

4)发光点抽样数 N_s递增,如没达到总发光 点样本数 N,返回步骤 1),否则停止光路跟踪过 程,计算 V 形槽 k 的有效发射率

 $\varepsilon_{aP}(k) = E_{out} \cdot / (A_r(k) \cdot \sigma T^4).$ 其中 $A_r(k)$ 为 V 形槽 k 的槽口面积,且有 $A_r(k) = \pi (R_{k+1}^2 - R_k^2).$

2 温度均匀性的影响因素分析

V形槽面源黑体的温度非均匀性包括两种类型,即轴向非均匀和径向非均匀.保证轴向均匀性 是实现径向均匀性的基础,没有实现轴向温度的 均匀分布是难以实现径向温度均匀分布的.由于 径向温度均匀性会受到材料、结构、工艺、防护措 施以及测试条件等多种条件的制约和限制,其形 成原因、变化规律及实际分布都相当复杂,必须结 合面源黑体的具体条件、结构以及工作状态等实 际因素进行具体分析,在此,本文不做重点讨论. 本文将重点分析轴向温度不均匀的成因及其对面 黑体辐射特性的影响规律和变化关系.

影响温度均匀性的主要因素包括:材料、槽深 度、微夹角以及定标器的工作温度.材料应选取热 导系数高、本征发射率高的材料,本文以无氧紫铜 为对象(热导系数1386 KJ/mhK),其表面经发黑 处理本征发射率容易达到0.9 以上.

假定环境温度为室温,工作环境处于真空状态,即只考虑内部导热与辐射换热,不考虑对流换热;辐射面基底采用热管均温等技术与防护措施, 其工作温度已达到完全均匀一致;当槽深分别为 1、3、5 mm;微夹角分别为20°、40°、60°;工作温度 分别为210、250、300、350、400、450 K,针对 V 形 槽面源黑体的温度均匀性进行有限元分析.其中 部分试验结果如图7~图14 所示.

图 7 腔深 1 mm 温度均匀性受槽夹角及工作温度的影响

图 8 腔深 3 mm 温度均匀性受槽夹角及工作温度的影响

图 12 槽夹角 60°温度均匀性受槽高及工作温度的影响

分析图7~图9,当工作温度、槽深度相同时, 温度非均匀性会随着槽夹角的增大而逐渐减小, 且随着工作温度与试验环境温度差异的增大,这 种温度不均匀性将变得越来越剧烈,这表明随着 槽夹角的增大,微腔肋结构纵横比减小,有效增强 了微腔结构的导热性能,从而大幅提高了表面的 温度均匀性;而当槽夹角、槽深度条件相同时,随 着工作温度接近环境温度,温度不均匀性逐渐减 小,并且在与环境温度相同时温度均匀性达到最 好,此时只有黑体内部导热而没有与环境间的辐 射换热;当黑体与环境的温度差异逐步增大时,根 据辐射换热理论,辐射换热量与温度的4次方之 差成比例关系,故而随着工作温度与环境温度差 异的增大,这种温度不均匀性将变得越来越剧烈.

分析图 10~图 12,当工作温度、槽夹角相同时,温度不均匀性会随着槽深度的增大而呈现近似线性的增大;表明槽深度增大,散热面积增大, 增强了微腔结构与环境的辐射传热量,与此同时降低了黑体表面的温度均匀性.

基于辐射特性评估方法,得到试验结果图 13、14.分析试验结果,在其他条件完全相同时,随 着槽夹角增大,有效发射率将降低,即槽夹角对温 度均匀性及面源黑体有效发射率具有双重影响, 不能简单的为了增强温度均匀性而任意增大槽夹 角,槽夹角的选择必须兼顾面源黑体有效发射率 及温度均匀性.一般地,槽夹角45°或60°时,能够 同时保证较好的温度均匀性及有效发射率,并且 容易加工.

3 温度均匀性与有效发射率的关系

根据以上分析结果,基于 V 形槽面源黑体辐射特性评估方法,取槽夹角为 60°的典型情况来 说明温度不均匀性对有效发射率的影响规律及变 化关系.试验假定 V 型槽底的真实温度为 50 ℃, 根据实际工作状态,其温度梯度按照槽高度方向 递减,为此针对不同的材料本征发射率 ε,假定温 度不均匀性由 0.01 ~0.1℃变化时,按温度变化 间隔为 0.01 ℃时计算面源黑体的有效发射率,试 验结果如图 15 所示.

图 15 温度不均匀性由 0.01~0.1 ℃时的有效发射率

按照相同的原理,当温度不均匀性为0.1~1℃ 变化时,按温度变化间隔为0.1℃时计算面源黑体 的有效发射率,试验结果如图16所示.其中,横坐标 温度梯度级的数值分别代表0.01℃或0.1℃的倍数.

图 16 温度不均匀性为 0.1~1 ℃时的有效发射率

观察试验结果,当不均匀性较小,即由0.01 ~ 0.1 ℃变化时,对有效发射率的影响并不大,即便达到0.1 ℃时,有效发射率降低仅为0.003 ~ 0.004;当温度不均匀性较大时,如图16所示,对有效发射率的影响就相对较大,且成线性规律变化,即当温度不均匀性为0.5 ℃时,有效发射率下降达0.02 ~ 0.03;而当温度不均匀性为1 ℃时,有效发射率下降达0.04 ~ 0.05.分析以上试验结果,V形槽结构面源黑体的槽深度不宜过深,这不仅能够减小温度不均匀性,还将避免由于温度不均匀性所导致的有效发射率进一步下降,影响面源黑体的辐射特性.实际设计时,建议槽深度不超过2 mm.

4 结 论

 1)温度均匀性的程度会受到槽深度、槽夹角 以及工作温度的综合影响:槽深度越大,温度均匀 性越差;槽夹角越小,温度均匀性越差;工作温度 偏离环境温度越大,温度均匀性越差;以上相反情况时,温度均匀性越好.

2) 槽夹角对温度均匀性及有效发射率有双 重影响,必须兼顾这两项指标及加工工艺的难易 合理选取,实际设计时建议采用45°或60°.

3)槽深度对温度均匀性有直接影响,并且会借由温度均匀性间接的对有效发射率产生影响; 设计时需综合考虑温度均匀性及有效发射率的具体要求进行选取,建议槽深度不超过2 mm.

4)保证面源黑体高有效发射率的基本前提 是保证辐射面的高温度均匀性.保证辐射面高温 度均匀性的基本条件,除了要采用高导热面源黑 体材料、合理的设计微腔结构外,需要特别注意的 是,必须严格保证加热制冷界面处温度的高度均 匀一致性,为此建议设计时采用热管配合保护套 热防护等技术.

参考文献:

- [1] DEWITT D P, NUTTER G D. Theory and practice of radiation thermometry [M]. New York: John Wiley & Sons Press, 1989: 656 - 662.
- [2] HILL K D, WOODS D J. The NRC blackbody—based radiation thermometer calibration facility[J]. AIP Conference Proceedings, 2003, 684(1): 669 - 674.
- [3] ZHANG H, DAI J M. A novel radiant source for infrared calibration by using a grooved surface [J]. Chinese Optics Letters, 2006, 4(5): 306 - 308.
- [4] BEDFORD R E, MA C K. Emissivities of diffuse cavities, II: Isothermal and nonisothermal cylindro-cones
 [J]. Joural of the optical Society of America, 1975, 65
 (5): 565 572.
- [5] CAOLA M J. Radiation from a nonisothermal spherical cavity: an exact solution[J]. Applied Optics, 2001, 40 (19): 3232 - 3234.
- [6] SHAN G H, GAO K, GAO M K. Study on radiation property of a multi-celled large-area blackbody [J]. Journal of Shenyang Institute of Gold Technology, 1996, 15(4): 363 - 367.
- [7] 谢植. 黑体辐射源理论研究[M]. 沈阳:东北工学 院, 1992: 15-21, 63-77.
- [8] ISHII J, KOBAYASHI M, SAKUMA F. Effective emissivities of blackbody cavities with grooved cylinders[J]. Metrologia, 1998, 35(3):175-180.
- [9] PROKHOROV A V. Monte Carlo method in optical radiometry[J]. Metrologia, 1998, 35(4):465-471.
- [10] LU Y P, LI B X, JIANG B C. Distributed characteristic of radiation transfer direction of a isothermal cylinder
 [J]. Journal of Harbin Institute of Technology, 2004, 36(6): 714-717. (编辑 张 宏)