石墨烯薄膜修饰 TiO₂ 纳米管光电极制备及性能

程修文,刘惠玲,王 璞,陈清华,张 健

(哈尔滨工业大学市政环境工程学院,城市水资源与水环境国家重点实验室,150090哈尔滨)

摘 要:为提高 TiO₂ 光催化剂的可见光催化活性,采用阳极氧化法制备了高度有序的 TiO₂ 纳米管,利用阳极电化学沉积构筑了石 墨烯薄膜修饰的 TiO₂ 纳米管光电极,并利用扫描电子显微镜、X-射线光电子能谱及紫外-可见漫反射光谱对其表观形貌、组成结构 及光吸收性能进行表征.结果表明:石墨烯有效地修饰在 TiO₂ 纳米管表面,且以透明薄膜形式存在.此外,石墨烯薄膜修饰显著拓展 了 TiO₂ 纳米管的可见光响应范围.以甲基蓝为探针分子,考察了阳极沉积电压及沉积时间对所制备石墨烯薄膜/TiO₂ 纳米管光电极 光催化性能的影响.结果表明:阳极沉积电压为+0.8 V、沉积时间为 10 min 时,制备的石墨烯薄膜/TiO₂ 纳米管光电极对甲基蓝的光 催化降解效果最佳.模拟太阳光下光照 120 min 对甲基蓝的降解率为 65.9%,是纯 TiO₂ 纳米管光电极的 1.35 倍.

关键词:石墨烯薄膜/TiO₂纳米管;光电极;光催化;甲基蓝

中图分类号: 0643;0644;0649 文献标志码: A 文章编号: 0367-6234(2014)06-0030-04

Preparation and performance of graphene film decorated TiO₂ nano-tubes photoelectrode

CHENG Xiuwen, LIU Huiling, WANG Pu, CHEN Qinghua, ZHANG Jian

(State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China)

Abstract: To improve the visible light photocatalytic (PC) activity of TiO₂ photocatalyst, the well-aligned TiO₂ nano-tubes (TiO₂ NTs) were in-situ grown by anodization of Ti foils, and the graphene film was anodic electrodeposited onto the aforementioned TiO₂ NTs to constructed graphene film decorated TiO₂ NTs (GF/TiO₂ NTs) photoelectrode. Apparent morphology, surface composition and light absorption ability of the resulting photoelectrodes were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV-visible light diffuse reflection spectroscopy (UV-vis DRS). It was found that the graphene were successfully decorated onto the surface of TiO₂ NTs electrode, and existed as the transparent film. In addition, the light absorption of GF/TiO₂ NTs photoelectrode was greatly red-shifted to visible light region. Furthermore, the methyl blue (MB) was served as the probing molecules, and the effects of deposition voltage and applied time were +0.8 V and 10 min, respectively, the optimal photoelecomposition of MB could be obtained. Under the simulated sunlight irradiation within 120 min, the 65.9% degradation rate of MB could be achieved, which was 1.35 time larger than that of pristine TiO₂ NTs photoelectrode. **Keywords**: GF/TiO₂ NTs; photoelectrode; photocatalysis; methyl blue

在众多的半导体家族中,TiO2以价格低廉、性

作者简介:程修文(1984—),男,博士研究生; 刘惠玲(1964—),女,教授,博士生导师. 通信作者:刘惠玲,hlliu2002@163.com. 质稳定、抗光和化学腐蚀、催化活性高等众多优点 成为使用最为广泛的光触媒^[1].然而也存在一定缺 陷^[2-4]: TiO₂属于宽带隙半导体,带隙能为 3.0~ 3.2 eV(锐钛矿为 3.2 eV,金红石为 3.0 eV),只能 响应波长小于 387 nm 的紫外光,而紫外光仅占太 阳光谱中的 2%~4%; TiO₂体系内因较高的光生电 子-空穴复合机率显著降低了量子产率及光催化活 性,进而限制了其实际应用; 虽然粉体 TiO₂具有较

收稿日期: 2013-08-20.

基金项目:国家自然科学基金资助项目(51178138);国家创新团 队资助项目(51121062);城市水资源与水环境国家重 点实验室(哈尔滨工业大学)资助项目(2010DX03, QA201416).

高的光催化活性,但存在着分离回收困难、难重复 利用等缺点.因此,如何有效地提高 TiO₂ 纳米材料 的使用寿命与光生载流子的分离效率及对太阳光 的利用率成为当前研究的热点.

新型的一维纳米结构如纳米线、纳米带及纳 米管等由于具有较高的表面与体积比及独特的尺 寸效应和良好的光吸收性能有效地解决了上述难 题[5-6].为了进一步提高催化剂对绿色能源"太阳 光"的利用率,对一维 TiO,纳米结构进行了大量 的改性工作.主要表现在半导体复合、染料光敏 化、贵金属沉积及元素掺杂等.sp²杂化的二维石 墨烯因其独特的电学、机械学及热学性质而受到 越来越多的关注.设计和开发 TiO, 光催化剂与石 墨烯的复合材料可以同时调控材料的电子传递性 能、光吸收性能、化学稳定性能与光催化性 能^[7-8],从而具有良好的应用前景.本研究首先利 用阳极氧化法在 Ti 箔上原位生成 TiO, 纳米管, 再利用阳极电化学沉积构筑了石墨烯薄膜/TiO, 纳米管光电极,重点考察了阳极沉积电位及沉积 时间对石墨烯薄膜/TiO,纳米管光电极光催化性 能的影响.并结合 SEM、XPS 及 DRS 测试对其结 构及形态进行了分析,初步探讨了还原石墨烯修 饰 TiO, 纳米管光催化活性提高的机制.

1 实 验

1.1 材料与试剂

钛箔(纯度>95%)购自长沙力元新材料公司 和上海利九精密合金有限公司.丙酮、氢氟酸、硝 酸、无水乙醇、氟化铵、丙三醇、硫酸、五氧化二磷、 高锰酸钾、过硫酸钾、双氧水、盐酸、水合肼及甲基 蓝等均为国药集团分析纯化学试剂,实验用水为 去离子水.

1.2 石墨烯的制备

氧化石墨烯根据 Xu 等^[9]的方法制备.为获得石 墨烯,首先将氧化石墨烯置于水合肼中处理 30 min, 再用 0.1 mol・L⁻¹的 HCl 与去离子水反复冲洗,最后 将所得样品在 80 ℃烘箱中真空干燥,待用.

1.3 GF/TiO₂ NTs 光电极的制备

利用阳极氧化法在金属钛箔(有效面积为 40 mm×10 mm×0.5 mm)上原位氧化生成 TiO₂ NTs光电极^[10].氧化之前,钛箔依次经过丙 酮、无水乙醇及去离子水超声清洗除油10 min,然 后在混酸 $V(HF):V(HNO_3):V(H_2O)=1:4:5$ 中化学抛光30 s,最后用大量去离子水将表面的 残油与酸冲洗干净,105 ℃烘干待用.在40 ℃恒 温水浴中,Ti 箔为阳极,Pt 片为阴极,0.5%(质量 分数)氟化铵和 60 %(体积分数)丙三醇的水溶 液电解液中进行阳极氧化.直流电压为 20 V,反应 时间为 2 h.待反应完成后,将所得无定型的 TiO₂ NTs光电极用去离子水反复冲洗,然后置于 105 ℃烘箱中干燥 4 h,最后于马弗炉中 500 ℃退 火处理 2 h,即得到 TiO₂ NTs 光电极.

石墨烯薄膜修饰的 TiO₂ NTs (GF/TiO₂ NTs) 光电极采用阳极电化学沉积的方法制备.电化学 沉积过程中以 100 mg · L⁻¹的石墨烯水溶液与 0.5 mol · L⁻¹硫酸钠的混合液为沉积液,以上述制 得的纯 TiO₂ NTs 电极为阳极,Pt 片为阴极,饱和 甘汞电极(SCE)为参比电极.在一定电压下电沉 积一定时间后取出,用大量去离子水反复冲洗干 净,最后于 70 ℃下真空干燥 4 h 即可得到石墨烯 薄膜修饰的 TiO₂ NTs 光电极.

1.4 表征

采用美国康泰公司生产的 Quanta 200F 扫描 电子显微镜(SEM)对光电极进行表观形貌观察. X-射线光电子能谱(XPS)测试在美国物理电子 公司生产的 PHI-5700 上进行,X 射线源采用 AlK_a($h\nu = 1$ 486.6 eV)射线,以仪器污染碳 C1s (结合能为 284.6 eV)作能量校正.紫外-可见漫 反射光谱(UV-vis DRS)测试在 UV-2550 上进 行,以 BaSO₄ 作参比校正.

1.5 光催化活性测试

以甲基蓝(MB)的液相光催化降解来评估 GF/TiO₂ NTs 光电极的光催化性能,降解中间产 物没有检测.光催化反应在自制的光反应装置中 进行,且整个过程中均采用自制的空气曝气器向 溶液中充加空气,流量为 0.5 L·min^{-1[11]}.将 GF/TiO₂ NTs垂直置于 80 mL 5 mg·L⁻¹的 MB 溶 液中避光搅拌 30 min,待吸附-脱附平衡后,开启 氙灯光源(35 W)开始计时,每隔 20 min 取样一 次,利用紫外-可见分光光度计在 600 nm 处的特 征吸收峰值检测 MB 的质量浓度,去除率通过 ($\rho_0 - \rho_i$)/ ρ_0 计算,其中 ρ_0 和 ρ_i 分别为原始的和 *t* 时间 MB 的质量浓度.

2 结果与讨论

2.1 SEM 分析

图 1 为纯 TiO₂NTs 和 GF/TiO₂ NTs 光电极的 SEM 图. 由图 1 (a) 可见, 纯 TiO₂ NTs 管径为 120 nm, 管壁为 20 nm. 由图 1 (b) 可以看出, 阳极 电化学沉积石墨烯并没有使 TiO₂ NTs 光电极的 表面形貌发生明显变化. 但是, GF/TiO₂ NTs 表面 出现了表面平滑且透明的石墨烯薄膜, 分布不均 匀.这种不均匀性主要是由于 TiO₂ NTs 表面各处的缺陷不一样, TiO₂ NTs 管口沉积的石墨烯层数不一致引起的^[12].

²² IIO₂ MIS (B)GF/ IIO₂ M 图 1 光电极的 SEM

2.2 XPS 分析

采用 XPS 进一步确定 GF/TiO₂ NTs 光电极中 石墨烯的表面价态,结果如图 2 所示.从 C1s 精细 XPS 图可以看出, C1s 出现了 4 个吸收峰,其中 284.6 eV处的吸收峰为 sp² 杂化的 C—C 和 C—H 键,而另外 3 个结合能分别在 286.7, 287.4 和 288.9 eV处的特征峰则为 C—OH、C = O 与 O—C = OH 的特征吸收,这表明采用阳极电化学沉积 法成功将石墨烯修饰在 TiO₂ NTs 光电极表面^[13]. 有文献指出^[7-8],石墨烯可以有效促进光生载流 子的流动与转移,从而抑制光生电子-空穴对的 复合,延长光生载流子的生命周期,从而显著提高 TiO₂ NTs的光催化活性.

2.3 UV-vis DRS 分析

为考察石墨烯薄膜沉积前后 TiO₂ NTs 光电 极对光吸收性能的影响,进行紫外-可见漫反射 光谱测试,结果如图 3 所示.可以看出,纯TiO₂ NTs 光电极在紫外光区有较强的吸收,这主要是由其 自身能带结构特性引起的^[14].然而,当电化学沉 积石墨烯薄膜后,TiO₂ NTs 不仅在紫外光区有增 强的光吸收性能,在可见光区也有明显的光吸收, 这主要是修饰的石墨烯薄膜引起的.由此可以判 断对 TiO₂ NTs 进行表面修饰石墨烯增强了紫外 光的吸收,还拓展了其对可见光的吸收.良好的可 见光吸收性能预示着GF/TiO₂NTs光电极将具有 良好的太阳光催化活性.

图 3 纯 TiO₂ NTs 和 GF/TiO₂ NTs 光电极的紫外-可见 漫反射光谱

2.4 沉积时间的影响

图 4 为+0.8 V 时不同沉积时间下制备的 GF/TiO, NTs 光电极对 MB 降解率的影响.可以看 出, 暗吸附 30 min 对 MB 的去除率仅为 1.6% 左 右.此外,随着阳极电化学沉积时间的延长,MB降 解率逐渐升高.当沉积时间为 10 min 时, GF/TiO₂ NTs光电极对 MB 的降解率最佳,模拟太 阳光下光照 120 min 对 MB 的降解率达 65.9%.进 一步延长沉积时间, MB 的降解率反而降低.这主 要是因为沉积时间过短,在TiO,NTs光电极上修 饰的石墨烯薄膜过少,光生电子向石墨烯转移被 肖特基(Schottky)势垒所俘获的数量较少^[15],大 部分光生电子-空穴发生复合,从而光催化效率 较低;而沉积时间过长,在GF/TiO2 NTs 光电极中 石墨烯薄膜的片层较厚,阻碍了 TiO, NTs 对光的 吸收,降低了光生电子-空穴对的产生量.同时,当 TiO, NTs 光电极表面上沉积的石墨烯薄膜过厚 时,会严重阻碍 GF/TiO, NTs 上光生电子空穴对 的传递,从而降低光催化活性.

图 5 为 10 min 时不同阳极沉积电压下所制备的 GF/TiO₂ NTs 光电极对 MB 降解率的影响.可以 看出,光照 120 min,纯 TiO₂ NTs 对 MB 的降解率仅

为48.7%.而TiO₂ NTs 经过表面修饰石墨烯薄膜 后,光催化活性显著增强.随着沉积电压的升高, GF/TiO₂ NTs 光电极的光催化活性逐渐升高.当沉 积电压为+0.8 V时,GF/TiO₂ NTs光电极对 MB 的 降解率最佳.模拟太阳光下光照 120 min 对 MB 的 降解率达 65.9%.进一步提高阳极沉积电压,MB 的 降解率反而降低.这主要是由于沉积电压过大导致 沉积的石墨烯薄膜过厚,这与 Liu 等^[16]的结果一 致.过厚的石墨烯薄膜覆盖在 TiO₂ NTs 表面严重影 响了其对光的吸收,从而导致产生的光生电子-空 穴对减少,最终导致光催化活性的下降.

图 5 10 min 时不同沉积电压对甲基蓝降解率的影响

3 结 论

1)采用阳极氧化法在金属 Ti 箔上原位生成 TiO₂ 纳米管,再利用阳极电化学沉积法成功制备 了石墨烯薄膜修饰的 TiO₂ 纳米管光电极.

2) SEM 及 XPS 结果表明,石墨烯有效地修饰 在 TiO₂ NTs 表面,且以薄膜形式存在.DRS 分析结 果表明,石墨烯薄膜修饰显著提高了 TiO₂ NTs 光 电极的光吸收性能.

3)当阳极沉积电压为+0.8 V、沉积时间为 10 min时,对甲基蓝的光催化降解效果最佳.模拟 太阳光下光照 120 min 对甲基蓝的降解率可达 65.9%,是纯 TiO₂ NTs 光电极的 1.35 倍.

参考文献

- FUJISHIMA A, HONDA K. Electrochemical photocatalysis of wastewater at a semiconducting electrode [J]. Nature, 1972, 238: 37–38.
- [2] LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO₂ surfaces: principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95: 735–758.
- [3] CHENG X W, LIU H L, CHEN Q H, et al. Preparation and characterization of palladium nano-crystallite decorated TiO₂ nano-tubes photoelectrode and its enhanced photoelectrocatalytic efficiency for degradation

of diclofenac [J]. Journal of Hazardous Materials, 2013,254/255:141-148.

- [4] HOFFMAN M R, MARTIN S T, CHIO W Y, et al. Environmantal application of semiconductor photocatalysis [J]. Chemical Reviews, 1995,95:69–96.
- [5] SHIN K, SEOK S, IM S H, et al. CdS or CdSe decorated TiO₂ nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells [J]. Chemical Communication, 2010, 46:2385-2387.
- [6] WANG J, ZHANG W D. Modification of TiO₂ nanorod arrays by graphite-like C₃N₄ with high visible light photoelectrochemical activity [J]. Electrochimica Acta, 2012, 71:10-16.
- [7] YUN J H, WONG R J, NG Y H, et al. Combined electrophoretic deposition-anodization method to fabricate reduced graphene oxide-TiO₂ nanotube films [J]. RSC Advances, 2012,2: 8164–8172.
- [8] SONG P, ZHANG X Y, SUN M X, et al. Graphene oxide modified TiO₂ nanotube arrays: enhanced visible light photoelectrochemical properties [J]. Nanoscale, 2012,4:1800-1804.
- [9] XU Y R, BAI H, LU G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. Journal of American Chemical Society, 2008, 130: 5856-5857.
- [10] CHENG X W, LIU H L, CHNE Q H, et al. Comparative study of photocatalytic performance on different TiO₂ nano-tubes arrays [J]. Journal of Alloys and Compounds, 2013, 566: 120–124.
- [11] CHENG X W, LIU H L, CHEN Q H, et al. Construction of N, S codoped TiO₂ NCs decorated TiO₂ nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism [J]. Electrochimica Acta, 2013, 103:134-142.
- [12]万斌, 陈鸣波, 周细应,等. Ag/TiO₂纳米管的制备及 其光催化性能 [J]. 稀有金属材料与工程, 2009,11 (38): 2012-2016.
- [13] AKHAVAN O, ABDOLAHAD M, ESFANDIAR A, et al. Photodegradation of graphene oxide sheets by TiO₂ nanoparticles after a photocatalytic reduction [J]. Journal of Physics Chemistry C, 2010, 114: 12955.
- [14] CHENG X W, YU X J, XING Z P. One-step synthesis of visible active C-N-S-tridoped TiO₂ photocatalyst from biomolecule cystine [J]. Applied Surface Science, 2012, 258: 7644-7650.
- [15] O' HAYRE R, NANU M, SCHOONMAN J, et al. Mottschottky and charge transport analysis of nanoporous titanium dioxide films in air [J]. The Journal of Physical Chemistry C, 2007, 111: 4809–4814.
- [16] LIU C B, TENG Y R, LIU R H, et al. Fabrication of graphene films on TiO₂ nanotube arrays for photocatalytic application [J]. Carbon, 2011, 49: 5312–5320.

(编辑 刘 形)