doi:10.11918/j.issn.0367-6234.2015.08.012

贵金属催化同时去除碳颗粒和 NO,

朱荣淑^{1,2},王俊佳¹,闫庆允¹,何建昇¹,吴祖力¹,欧阳峰^{1,2}

(1. 深圳水资源利用与环境污染控制重点实验室(哈尔滨工业大学深圳研究生院),518055 广东 深圳;2.城市废弃物能源再生公共技术服务平台,518055 广东 深圳)

摘 要:为系统研究贵金属催化同时去除碳颗粒和 NO_x的活性及抗硫抗水性能,采用等体积浸渍法制备了一系列贵金属催化剂(Ru/ZrO₂、Ag/ZrO₂、Rh/ZrO₂、Pd/ZrO₂、Pt/ZrO₂、Ir/ZrO₂、Au/ZrO₂),研究了富氧条件下其催化去除碳颗粒和 NO_x的活性,并考察了 SO₂和 H₂O 对其催化活性的影响.结果表明:在富氧条件下,贵金属的负载提高了碳颗粒和 NO_x 同时去除的活性,其中 Ru/ZrO₂、Ag/ZrO₂和 Pd/ZrO₂的催化活性较佳;SO₂和 H₂O 对 Ir/ZrO₂催化同时去除碳颗粒和 NO_x、Pt/ZrO₂催化去除碳颗粒、NO_x和 H₂O 对 Ir/ZrO₂催化同时去除碳颗粒和 NO_x、Pt/ZrO₂催化去除碳颗粒、NO_x和 H₂O 对 Ir/ZrO₂催化同时去除碳颗粒和 NO_x、Pt/ZrO₂ 化去除碳颗

关键词: 富氧;贵金属催化剂;同时去除;碳颗粒;NO

中图分类号: X511 文献标志码: A 文章编号: 0367-6234(2015)08-0059-07

Simultaneous removal of soot and NO_x with noble metal catalysts

ZHU Rongshu^{1,2}, WANG Junjia¹, YAN Qingyun¹, HE Jiansheng¹, WU Zuli¹, OUYANG Feng^{1,2}

(1.Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control(Harbin Institute of Technology Shenzhen Graduate School), 518055 Shenzhen, Guangdong, China; 2. Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, 518055 Shenzhen, Guangdong, China)

Abstract: In order to systematically evaluate the activities of the noble metal catalysts for simultaneous removal of soot and NO_x and the corresponding effect of sulfur and water, a series of noble metal catalysts (Ru/ZrO₂, Ag/ZrO₂, Rh/ZrO₂, Pd/ZrO₂, Pt/ZrO₂, Ir/ZrO₂, Au/ZrO₂) were prepared by iso-volumetric impregnation method firstly. Then the activities of the noble metal catalysts for simultaneous removal of soot and NO_x were measured under oxygen-rich condition, and the effect of SO₂ and H₂O on the performances of those catalysts were also studied. Experimental results showed that noble metal catalysts, Ru/ZrO₂, Ag/ZrO₂ and Pd/ZrO₂ have higher catalytic activity. The existence of SO₂ and H₂O promoted Ir/ZrO₂ catalystal removal of soot and NO_x simultaneously, promoted Pt/ZrO₂ catalyze for soot oxidation, Ru/ZrO₂ for NO_x reduction and inhibited the catalytic activities of other noble metals.

Keywords: oxygen-rich condition; noble metal catalysts; simultaneous removal; soot; NO

由于柴油机是在富氧条件下燃烧,其排放尾气富 含氧气导致传统的三效催化剂并不适用,使得碳颗粒 和氮氧化物 (NO_x)的排放一直是柴油车尾气治理的

- 作者简介:朱荣淑(1977—),女,副教授,硕士生导师; 欧阳峰(1957—),男,教授,博士生导师.
- 通信作者:朱荣淑,rszhu@hitsz.edu.cn; 欧阳峰,ouyangfh@hit.edu.cn.

重点和难点.自 Yoshida 等^[1]提出"soot-O₂-NO"3 组 分之间的反应以来,用柴油机过滤器上收集的碳颗粒 还原氮氧化物 (NO_x)引起普遍关注^[2-4].文献[5-6] 研究了钙钛矿型(ABO₃)和尖晶石型(AB₂O₄)复合 氧化物在富氧条件下同时去除碳颗粒和 NO_x 的可 能性,发现该体系对催化同时去除碳颗粒和 NO_x 的可 能性,发现该体系对催化同时去除碳颗粒和 NO_x 具 有较高的活性.朱荣淑等^[3]制备了系列单一金属氧 化物催化剂,研究其同时催化去除碳颗粒和 NO_x 的 活性,考察碳颗粒与催化剂之间的接触方式对催化 活性的影响,并分析了碳颗粒和 NO_x 催化同时去除 的路径.结果表明,Cr、Mn、Co 和 Ni 金属氧化物催化

收稿日期: 2014-04-03.

基金项目:国家自然科学基金青年基金(20907012);深圳市战略新 兴产业发展专项资金(JCYJ20130329162012793);深圳 市科技研发资金(CXZZ20130516145955144).

剂对同时去除碳颗粒和 NO_x 具有较高的催化活性. 但由于过渡金属催化剂普遍存在抗水抗硫性能差的 缺点,在真实柴油车尾气环境下催化活性大幅 下降^[7-8].

贵金属催化剂因具有良好的抗硫抗水性能而得 到广泛关注^[4,9-10]. Matsuoka 等^[11]研究了在富氧条 件下碳颗粒催化还原 NO_x,并发现 Pt 催化剂比 K、 Ca 和 Cu 催化剂有更好的催化活性.即使在氧含量 为 8%时, Pt 催化剂也能保持很好的催化活性,在反 应温度为 500 ℃时 NO 被完全还原为 N₂. 朱荣淑 等^[4]对 Ir/Al₂O₃和 Pt/Al₂O₃在富氧条件下同时催 化去除 NO_x和碳颗粒进行了研究,发现 Ir/Al₂O₃比 Pt/Al₂O₃有更高的催化活性.然而,贵金属催化同时 去除碳颗粒和 NO 的系统研究尚未见报道.本实验 制备了一系列单贵金属催化剂(Ru/ZrO₂、Ag/ZrO₂、 Rh/ZrO₂、Pd/ZrO₂、Pt/ZrO₂、Ir/ZrO₂、Au/ZrO₂),研 究了富氧条件下其催化同时去除碳颗粒和 NO_x 的活性,并考察了 SO₂和 H₂O 对其催化活性的 影响.

1 实 验

1.1 原料和试剂

贵金属前驱物包括 RuCl₃ · 3H₂O、H₂PtCl₆ · 6H₂O、RhCl₃ · nH₂O(昆明铂锐金属材料有限公司, 纯度 > 99. 9%)、AgNO₃(上海博达化工有限公司, 纯度 > 99. 8%)、Pd(NH₄) NO₃、H₂IrCl₆ · 6H₂O 和 HAuC₄ · 4H₂O(上海拓思化学有限公司, 纯度 > 99. 9%).载体采用纳米 ZrO₂(南京埃普瑞纳米材料 有限公司, 纯度 > 99. 9%, 粒径 40 nm, 比表 面 40 m²/g).采用 Printex-U 型碳颗粒(Degussa,德国) 模拟柴油车尾气中的碳颗粒.

1.2 催化剂的制备

采用等体积浸渍法制备催化剂,贵金属负载总量为1%(质量分数).经计算量取一定浓度的贵金属前驱物溶液浸渍在 ZrO₂ 载体上,室温下静置 24 h 后在 110 ℃干燥 10 h,最后在 850 ℃1.5% H₂/N₂ 的 气氛中煅烧 3 h,得到实验所需贵金属催化剂.

1.3 催化剂的活性评价

催化剂活性通过程序升温反应(temperature program reaction, TPR)技术进行评价.评价实验在连续流动固定床反应装置上进行,反应器为内径 6 mm的石英管.实验所需温度由单管电阻炉提供,其温度由可编程温控仪(北京朝阳自动化仪表厂,CKW-2200)控制,程序升温速率为 4 C/min.反应过程中产生的 CO和 CO₂ 经 Ni 触媒转化炉转化后由带有FID 检测器的气相色谱仪(岛津仪器(苏州)有限公

司,GC-2014C) 检测;NO、NO₂、NO_x(包括 NO 和 NO₂) 由 NO_x分析仪(澳大利亚 ECOTECH 公司, EC9841) 检测.气体检测均为在线检测.

为增强实验的可重复性,催化剂与碳颗粒采用 "紧密接触"方式,即将碳颗粒与催化剂按1:10的 质量比混合后置于玛瑙研钵中研磨1h,然后在 20 MPa压力下压片,经破碎后筛分出粒径为0.125 ~0.425 mm 的样品颗粒备用.每次实验取总质量为 0.055 g 的样品置于反应器中.反应混合气的体积分 数组成为 NO(0.042%)、O₂(4%)、Ar(平衡气),气 体总流量为 100 mL/min.为了考察 SO₂ 和 H₂O 的影 响,添加的 SO₂ 和 H₂O 的体积分数分别为 0.003% 和 4%.

催化剂对碳颗粒和 NO_x 去除的催化活性,主要可由两个参数评价,即碳颗粒氧化的峰值温度 (t_{neak})和 NO_x 的最大转化率(η).η由下式计算

$$\eta = \frac{420 - \varphi(\text{NO}_x)}{420} \times 100\% .$$
 (1)

其中 420 代表初始通入 NO_x 体积分数为 420 mL/m³, φ (NO_x) 为检测到的 NO_x 体积分数. t_{peak} 越低, η 越大,催化剂活性越高.

2 结果与讨论

2.1 富氧条件下贵金属的催化活性

图 1 为富氧条件下单贵金属催化去除碳颗粒和 NO_x 过程中 CO_x 和 NO_x 的 TPR 曲线,其 t_{peak} 和 η 见 表 1. 从图 1 可以看出,碳颗粒和 NO_x 的去除发生在 同一温度区间内.这一现象表明碳颗粒和 NO_x 发生 了同时去除. 从表 1 可以看出, ZrO₂ 的 t_{peak} 为 543.9 ℃, η 为 8. 6%.对于碳颗粒的去除,贵金属催 化剂的 t_{peak} 均比 ZrO₂ 的低,其活性顺序为 Ru/ZrO₂ > Ag/ZrO₂ > Rh/ZrO₂ > Pd/ZrO₂ > Pt/ZrO₂ > Ir/ZrO₂ > Au/ZrO₂ > ZrO₂.对于 NO_x 的去除,除 Au/ZrO₂ 的 η 值 低于 ZrO₂ 外,其他贵金属催化剂的 η 值均比 ZrO₂ 的高,其活性顺序为 Ag/ZrO₂ > Pd/ZrO₂ > Ru/ZrO₂ > Ir/ZrO₂ > Pt/ZrO₂ > Rh/ZrO₂ > Cn/ZrO₂ = Ru/ZrO₂ + Ru/ZrO₂ = Ru/ZrO₂ + Ru/Zr

Jeguirim 等^[12-13] 深入研究了贵金属催化氧化碳 颗粒的机理,发现 Ru 和 Pt 等贵金属在富氧条件下 可与氧气作用形成 M(O),M(O)与碳颗粒反应生成 C(O),使 C 活化,从而促进了碳颗粒和 NO₂ 的反 应,降低了碳颗粒的氧化温度,其反应式如下:

$$M + O_2 \to M(O), \qquad (2)$$

$$M(0) + -C \to M + -C(0),$$
 (3)

$$C(0) + NO_2 \rightarrow C(0NO_2), \qquad (4)$$

$$C(ONO_2) \to CO_2 + NO.$$
 (5)

图1 富氧条件下贵金属催化去除碳颗粒和 NO_x 的 TPR 曲线

表1 富氧条件下贵金属催化去除碳颗粒和 NO_x 的 t_{peak} 和

η ill		
催化剂	$t_{ m peak}$ / °C	$\eta/\%$
Ru/ZrO ₂	487.5	11.0
Pd/ZrO_2	508.4	13.1
Ag/ZrO_2	499.5	14.3
Rh/ZrO_2	506.7	9.6
Pt/ZrO ₂	517.9	9.9
Au/ZrO_2	524.1	8.2
Ir/ZrO ₂	518.1	10.2
ZrO_2	543.9	8.6

去除碳颗粒和 NO_x 的 TPR 曲线 对于贵金属的催化氧化活性顺序, Chen 等^[14] 研究了 Ru、Rh、Pd 和 Pt 催化氧化 CO 的催化活性, 发现不同贵金属吸附氧的能力有所差异进而影响其 催化氧化 CO 的能力, 不同贵金属吸附 O 原子的强 弱顺序为 Ru>Rh>Pd>Pt.吸附 O 原子越强, 有利于 催化剂表面形成以活性氧为主的位点, 从而使其氧 化活性也越强.显然,本研究中观察到的贵金属 Ru、 Rh、Pd 和 Pt 的氧化活性顺序与 Chen 等^[14]报道的 一致, 这表明贵金属催化氧化碳颗粒的活性主要与 氧在贵金属表面的吸附性有关.对于 Ir、Au, Zhang 等^[9-10]的研究表明其具有很强的表面氧吸附,表面 可形成类氧化物层.由于氧吸附过强,其可能利于氧 化物形成(如方程(2)所示)而不利于 O 的传递(如 方程(3)所示)^[15],从而导致 Ir、Au 表现了低的催化 氧化碳颗粒的活性.对于 Ag, Li 等^[16]的研究也表明 其具有很强的表面氧吸附,但并不稳定,导致其表现 了高的催化氧化碳颗粒的活性.

对于 NO_x 减少表现为与碳颗粒同时去除(如图 1 所示),这主要归因于 NO 与碳氧化中间产物 C (O)之间的反应^[4],即 NO+C(O) \rightarrow N₂(N₂O)+ CO₂.Wang 等^[17]研究了富氧条件下贵金属催化 CO 还原 NO,发现其催化活性顺序为 Ir> Pd> Pt> Rh.显 然,除 Pd 外,这一活性顺序与本研究观察到的贵金 属催化还原 NO_x 的活性顺序一致.对于 Pd 催化 NO 还原的高活性,Ohtsuka 等^[18]也观察到类似现象,并 且观察到 Pd 催化 NO+O₂ 生成 NO₂ 的活性较低,但 催化 NO_x +O₂(NO_x 为 NO 或 NO₂)与甲烷反应的活 性很高,这可能与 NO 在 Pd 表面具有较好的分解活 性相关^[19-20],其可能的 NO_x 去除路径如下:

 $NO(g) \rightarrow NO(a)$, (6)

$$NO(a) \rightarrow N(a) + O(a), \qquad (7)$$

 $C + O(a) \rightarrow CO(a), \qquad (8)$

$$CO(a) + O(a) \to CO_2(a)$$
, (9)

$$N(a) + N(a) \rightarrow N_2(a).$$
 (10)

即吸附在 Pd 表面的 NO 分解形成吸附态的 N 和 O, 吸附态的 O 经 Pd 传递到 C 表面反应生成 C(O),促 进了碳颗粒的氧化.吸附 O 被消耗,使吸附态的 N 更容易形成 N, 而从催化剂表面释放出来,导致 NO, 浓度出现一个较大的降低峰,从而使 Pd 具有较高 的 η 值.但值得注意的是,这一机理与早期分析 Ir/ Al_2O_3 在富氧条件下催化同时去除碳颗粒和 NO_x 的 反应路径^[4]略有不同,其中的机理差异还有待进一 步研究.对于 Ag 和 Ru,有关其催化 NO 直接分解的 报道很少.但 Ru 具有较强的传输氧能力^[21],利于碳 氧化中间产物 C(0)形成,从而利于促进 NO 与碳氧 化中间产物 C(O) 之间的反应.从碳颗粒的氧化活性 (如表1所示)可以看出, Ag可能与Ru有类似之 处,具有较强的传输氧能力,较利于碳氧化中间产物 C(0)形成,而其催化氧化性略低于 Ru,从而更利于 C(0)还原 NO.对于 Au 对 NO, 减少低于载体,从其 催化氧化碳颗粒的活性可知,主要是其催化氧化活 性高于载体,从而更利于将 C(0) 直接氧化而不利 于 C(0)还原 NO.

2.2 SO₂ 和 H₂O 对催化活性的影响

图 2 为添加 SO₂ 和 H₂O 条件下单贵金属催化

去除碳颗粒和 NO_x 过程中 CO_x 和 NO_x 的 TPR 曲线, 其 t_{peak} 和 η 列于表 2.图 3 比较了在富氧和富氧含硫 含水条件下贵金属催化去除碳颗粒和 NO_x 的 t_{peak} 和 η .可以看出,SO₂ 和 H₂O 的添加对 Ir 催化同时去除 碳颗粒和 NO_x 的活性有促进作用,对 Ru 催化去除 NO_x 的活性有促进作用,对 Ru 催化去除 时有促进作用,但对其他贵金属普遍存在抑制作用, 而对 Pd 和 Au 的抑制尤其明显.

表 2 含硫含水条件下贵金属催化去除碳颗粒和 NO_x 的 t_{peak}和 η 值

催化剂	$t_{ m peak}$ / °C	$\eta/\%$
Ru/ZrO ₂	509.2	26.2
Pd/ZrO_2	554.5	5.7
Ag/ZrO_2	514.3	11.6
Rh/ZrO_2	519.2	8.9
Pt/ZrO ₂	497.3	5.5
Au/ZrO_2	564.2	7.8
Ir/ZrO_2	493.6	12.7
ZrO_2	619.9	5.9

Oi-Uchisawa 等^[22]研究了 SO₂ 和 H₂O 对 Pt/ SiO₂ 催化氧化碳颗粒的影响,发现 SO₂ 和 H₂O 的存 在降低了碳颗粒的氧化温度,认为在程序升温过程 中生成的 SO₃ 和硝酸促进了碳颗粒氧化.Liu 等^[23] 研究了 H₂SO₄ 对 Pt/Al₂O₃ 催化氧化碳颗粒和催化 还原 NO_x 的影响,发现 H₂SO₄ 能促进碳颗粒的氧 化,但对 NO_x 的还原具有抑制作用,认为硫酸盐有 利于 NO_x 在碳颗粒表面的吸附,促进了碳颗粒和 NO₂ 的反应,但其不利于 NO_x 在催化剂表面的吸附, 使催化剂催化分解 NO_x 的量降低.这与本研究中观 察到的 Pt 催化现象一致.

Fujitani 等^[24]研究了富氧条件下 SO₂ 在 Ir (111)表面的反应,当温度在 200 K 时 SO₂ 分子吸 附在 Ir 表面,温度升高到 300 K 时,Ir 表面的 SO₂ 会 发生反应生成 S 和 SO₃,而当温度升高到 500 K 以 上时,Ir 表面只有 S,S 能与 Ir 表面的 O 反应,提高 Ir 的抗氧化性能,因此,Ir 在含硫条件下仍然能保持 较高的催化活性.Haneda 等^[25]研究了 SO₂ 对 Ir、Pt、 Rh、Pd 催化还原 NO 活性的影响,发现 SO₂ 能提高 Ir 催化还原 NO 的活性,主要因为 SO₂ 能使 Ir 具有 稳定活性中心,且有利于 NO-Ir-CO 的生成,从而提 高了 NO 的去除率,其反应如下

$$NO - Ir - CO \rightarrow Ir - N + CO_2, \qquad (11)$$

$$Ir - N + Ir - N \rightarrow 2Ir + N_2.$$
(12)

Haneda 等^[26]也发现 H₂O 存在时能提高 Ir 的催 化活性,认为 H₂O 存在有利于 IrO₂ 被还原生成 Ir, 使催化剂保持催化活性.因此,SO₂ 和 H₂O 的存在起 到防止 Ir 被氧化的作用,从而使催化剂保持较高的 催化活性.

图 2 含硫含水条件下贵金属催化去除碳颗粒和 NO, 的 TPR 曲线

图 3 贵金属催化剂在富氧和含硫含水条件下同时去除碳 颗粒和 NO_x 时 t_{peak}和 η 的相关性

Kolli 等^[27]研究了 SO₂ 对 Pd/ZrO₂ 催化氧化 CO 的影响,发现在反应过程中 SO₂ 以硫酸盐的形式吸 附在 Pd 表面,覆盖了催化剂上的活性位点,导致催 化剂活性降低.李兰廷等^[28]研究了富氧条件下 SO₂ 对 Au 催化氧化 CO 的影响,发现在反应过程中 SO₂ 被氧化并以硫酸盐的形式吸附在催化剂的活性位点 上,使催化剂出现 SO₂ 中毒现象.Pekridis 等^[29]研究 了 SO₂ 对 Rh 催化还原 NO 的影响,发现在反应过程 中 SO₂ 吸附在催化剂表面而阻碍了 NO 的吸附,使 NO 的去除率降低.Fujitani 等^[24] 对照了 SO₂ 在 Ir (111)和 Rh(111)表面的吸附和反应,结果表明,当 温度升高到 500 K 以上时, Ir 表面 S 能与其表面的 O 反应, 而 Rh 表面 S 不能与其表面的 O 反应. 石晓 燕等^[30]研究表明, H₂O 对 Ag/Al₂O₃ 催化还原 NO_x 表现出抑制作用.尽管 Ouyang 等^[31]报道了 SO₂ 可 促进 4% Ag/Al₂O₃ 催化 NO_x 还原, 但在 Ag 载量为 1. 2%低载量时, SO₂ 因吸附于催化剂表面而使催化 剂失活^[32]. 由此可见, Pd/ZrO₂、Au/ZrO₂、Rh/ZrO₂、 Ag/ZrO₂ 在含硫含水条件下贵金属催化剂活性有所 降低, 主要是因为 SO₂ 吸附在催化剂表面导致催化 剂中毒.

Tschammber 等^[21]研究发现,富氧条件下 Ru 催 化 NO,氧化碳颗粒的活性强于 Pt,这主要是由于 Ru易将 NO,分解,而分解后产生的活性氧易与碳 颗粒反应形成 C(O) 物种,促进碳颗粒的氧化.这与 本研究中观察到的催化现象一致.但 SO, 和 H,O 的 存在对 Ru 催化去除 NO, 的促进作用与文献报道并 不一致. Marnellos 等^[33]研究了 SO₂ 和 H₂O 对 Ru/ Al₂O₃催化分解 N₂O 的影响,发现在无硫条件下 N₂O的转化率为80%,但当反应气体中含有5%的 水或少量的 SO, 时, N, O 的转化率不足原来的一半. 对于 SO, 和 H,O 的存在对 Ru 催化去除 NO, 的促进 作用,对照图 1(a)和图 2(a)可以看出,SO,和 H₂O 的存在使 Ru 在 370 ℃催化去除 NO_x,且碳颗粒的 去除过程与 NO_x 的去除过程也不一样,这可能与 Ru 在富氧含硫含水条件下的催化特性有关.有关 Ru 在 富氧含硫含水条件下的催化特性还有待进一步 研究.

3 结 论

1)在富氧条件下,碳颗粒和 NO_x 可同时去除, 贵金属的负载普遍提高了催化剂的催化活性,其中 Ru/ZrO₂、Ag/ZrO₂ 和 Pd/ZrO₂ 具有较高的催化同时 去除碳颗粒和 NO_x 的活性.

2)SO₂和 H₂O 对 Ir/ZrO₂催化同时去除碳颗粒 和 NO_x 有促进作用,对 Pt 催化去除碳颗粒有促进作 用,对 Ru 催化去除 NO_x 有促进作用,对其他贵金属 有抑制作用.

参考文献

- YOSHIDA K, MAKINO S, SUMIY A, et al. Simultaneous reduction of NO_x and particulate emissions from diesel engine exhaust[R]. SAE Paper No.892046. 1989.
- [2] TERAOKA Y, NAKANO K, SHANGGUAN Wenfeng, et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides [J].

Catalysis Today, 1996, 27(1/2): 107-113.

- [3] 朱荣淑,郭明新,欧阳峰. 单一金属氧化物同时催化去除碳颗粒和 NO_x [J]. 物理化学学报, 2009, 25(1):131-136.
- [4] ZHU Rongshu, GUO Mingxin, CI Xibo, et al. An exploratory study on simultaneous removal of soot and NO_x over Ir/gamma-Al₂O₃ catalyst in the presence of O₂ [J]. Catalysis Communications, 2008, 9(6): 1184–1188.
- [5] SHANGGUAN Wenfeng, TERAOKA Y, KAGAWA S.
 Promotion effect of potassium on the catalytic property of CuFe₂O₄ for the simultaneous removal of NO_x and diesel soot particulate [J]. Applied Catalysis B: Environmental, 1998, 16(2): 149–154.
- [6] WANG Zhongpeng, LI Qian, WANG Liguo, et al. Simultaneous catalytic removal of NO_x and soot particulates over CuMgAl hydrotalcites derived mixed metal oxides[J]. Applied Clay Science, 2012, 55(1): 125–130.
- [7] 刘光辉,黄震,上官文峰,等. 尖晶石型 MnCo₂O₄ 催化剂的 制备及 SCR 性能研究[J]. 科学通报, 2002,47: 1620-1623.
- [8] BUENO-LOPEZ A, GARCIA GARCIA A. Influence of SO₂ in the reduction of NO_x by potassium-containing coal pellets[J]. Energy & Fuels, 2005, 19 (1): 94–100.
- [9] ZHANG Hong, ALOYSIUS S, BERNARD D, et al. Stability, structure, and electronic properties of chemisorbed oxygen and thin surface oxides on Ir(111) [J]. Physical Review B, 2008, 78: 045436.
- [10] SHI Hongqing, CATHERINE S. First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111)[J]. Physical Review B, 2007, 76: 075327.
- [11]MATSUOKA K, ORIKASA H, ITOHY, et al. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen[J]. Applied Catalysis B: Environmental, 2000,26 (1):89-99.
- [12] JEGUIRIM M, TSCHAMBER V, BRILHAC J F, et al. Interaction mechanism of NO₂ with carbon black: effect of surface oxygen complexes [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(1):171-181.
- [13] JEGUIRIM M, TSCHAMBER V, VILLANI K, et al. Mechanistic study of carbon oxidation with NO₂ and O₂ in the presence of a Ru/Na - Y catalyst [J]. Chemical Engineering Technology, 2009, 32(5): 830-834.
- [14] CHEN M S, CAI Y, YAN Z, et al. Highly active surfaces for CO oxidation on Rh, Pd, and Pt[J]. Surface Science, 2007, 601(23):5326-5331.
- [15] 江凌, 王贵昌, 关乃佳,等. CO 在某些过渡金属表面吸 附活化的 DFT 研究[J]. 物理化学学报, 2003, 19(5): 393-397.
- [16] LI Weixue, CATHERINE S, MATTHIAS S. Oxygen adsorption on Ag (111): a density-functional theory

investigation [J]. Physical Review B, 2002, 65: 075407.

- [17] WANG Aiqin, MA Lei, YU Cong, et al. Unique properties of Ir/ZSM-5 catalyst for NO reduction with CO in the presence of excess oxygen [J]. Applied Catalysis B: Environmental, 2003, 40(4):319-329.
- [18] HIROFUMI O. The selective catalytic reduction of nitrogen oxides by methane on noble metal-loaded sulfated zirconia
 [J]. Applied Catalysis B: Environmental, 2001, 33(4): 325-333.
- [19] NAKAMURA I, FUJITANI T, HAMADA H. Adsorption and decomposition of NO on Pd surfaces [J]. Surface Science, 2002,514(1):409-413.
- [20] GARIN F. Mechanism of NO_x decomposition [J]. Applied Catalysis A: General, 2001, 222(1):183-219.
- [21] TSCHAMBER V, JEGUIRIM M, VILLANI K, et al. Comparison of the activity of Ru and Pt catalysts for the oxidation of carbon by NO₂ [J]. Applied Catalysis B: Environmental, 2007,72 (3/4): 299-303.
- [22] OI-UCHISAWA J, OBUCHI A, OGATA A, et al. Effect of feed gas composition on the rate of carbon oxidation with Pt/SiO₂ and the oxidation mechanism [J]. Applied Catalysis B: Environmental, 1999, 21(1):9-17.
- [23] LIU Shuang, WU Xiaodong, WENG Duan, et al. Sulfation of Pt/Al₂O₃ catalyst for soot oxidation: high utilization of NO₂ and oxidation of surface oxygenated complexes [J]. Applied Catalysis. B: Environmental, 2013, 138–139:199–211.
- [24] FUJITANI T, NAKAMURA I, KOBAYASHI Y, et al. Adsorption and reactivity of SO₂ on Ir(111) and Rh(111)
 [J]. Surface Science, 2007, 601(6):1615-1622.
- [25] MASAAKI H, PUSPARATU, YOSHIAKI K, et al. Promotional effect of SO₂ on the activity of Ir/SiO₂for NO reduction with CO under oxygen-rich conditions [J]. Journal of Catalysis, 2005, 229(1):197–205.

- $[\,26\,]$ HANEDA M, HAMADA H. Promotional role of H_2O in the selective catalytic reduction of NO with CO over Ir/WO_3/SiO_2 catalyst[J]. Journal of Catalysis, 2010, 273(1):39–49.
- [27] KOLLI T, HUUHTANEN M, HALLIKAINEN A, et al. The effect of sulfur on the activity of Pd/Al₂O₃, Pd/CeO₂ and Pd/ZrO₂ diesel exhaust gas catalysts [J]. Catalysis Letters, 2009, 127(1/2):49-54.
- [28]李兰廷,高小华,张军,等.纳米 Au/TiO₂ 催化剂的制 备及其抗湿/抗硫性能研究[J].催化学报,2007,27 (2):162-165.
- [29] PEKRIDIS G, KAKLIDIS N, KOMVOKIS V, et al. Surface and catalytic elucidation of Rh/gamma – Al₂O₃ catalysts during NO reduction by C₃H₈ in the presence of excess O₂, H₂O, and SO₂ [J]. The Journal of Physical Chemistry A, 2009, 114(11):3969–3980.
- [30]石晓燕,张长斌,贺泓. 富氧条件下 Ag/Al₂O₃ 和 Cu/Al₂O₃ 组合催化剂催化 C₃H₆ 选择性还原 NO_x 的性能
 [J]. 催化学报, 2005, 1: 69-73.
- [31] OUYANG Feng, ZHU Rongshu, KAZUHITO S, et al. Promotion of surface SOx on the selective catalytic reduction of NO by hydrocarbon over Ag/Al₂O₃ [J]. Applied Surface Science, 2006,252:6390-6393.
- [32] MEUNIER F C, ZUZANIUK V, BREENJ P, et al. Mechanistic differences in the selective reduction of NO by propene over cobalt-and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study [J]. Catalysis Today, 2000, 59(3/4):287-304.
- [33] MARNELLOS G E, EFTHIMIADIS E A, VASALOS I A. Effect of SO₂ and H₂O on the N₂O decomposition in the presence of O₂ over Ru/Al₂O₃[J]. Applied Catalysis B: Environmental, 2004,46(3):523-540.

(编辑 刘 形)

封面图片说明

封面图片出自论文"纳米 TiO₂颗粒与腐殖酸和 SDBS 的相互作用机制"。基于纳米 TiO₂颗粒与腐 殖酸和 SDBS 相互作用及环境水化学条件对其相互作用的影响研究,探讨了纳米 TiO₂颗粒同腐殖酸和 SDBS 的相互作用机制。图片显示了纳米 TiO₂颗粒与腐殖酸和 SDBS 相互作用过程的 3 步骤,即聚集、 接近和强相互作用。且表明了纳米 TiO₂颗粒与腐殖酸和 SDBS 强相互作用的不同之处:颗粒表面带负 电荷时,腐殖酸因配位体交换作用在颗粒表面发生吸附,而 SDBS 的疏水尾端因疏水作用和氢键促使其 在纳米 TiO₂颗粒表面产生吸附。该图片从机理角度阐明了纳米材料同环境有机物在水环境中的相互 作用,为控制纳米污染物在水环境中的污染效应提供了理论基础。

(图文提供:鲁晶,刘冬梅,刘世光,刘海星,杨晓南,赵英,崔福义.哈尔滨工业大学市政环境工程学院)