doi:10.11918/j.issn.0367-6234.2016.08.011

结合图论的供水管网 PMA 分区方法

高金良,姚 芳,叶 健

(哈尔滨工业大学市政环境工程学院,哈尔滨 150090)

摘 要:供水管网压力分区(PMA)以压力调控为主,兼顾区域计量,可有效地控制城市管网漏失,为此,提出结合图论的 PMA 分区方法,首先运用自适应 AP 聚类算法结合经济性计算对供水管网进行初步分区,确定分区数目;然后运用迪杰斯特拉 (Dijkstra)算法计算各个聚类中心点到水源的最短路径,确定各个分区的供水管段;建立分区边界优化模型,运用模拟退火算 法求解该模型;最后结合人工经验对部分分区进行适当合并,形成最终方案并运用于 Y 市供水管网实例,取得良好结果.该种 分区方法是以计算机算法为主体并结合人工经验,很大程度降低分区的工作量,并且比传统的人工试错分区具有更大的搜索 空间,可用于指导实际供水管网的 PMA 分区.

关键词: PMA 分区;图论;AP 聚类算法;迪杰斯特拉算法;模拟退火算法 中图分类号: TU991 文献标志码: A 文章编号: 0367-6234(2016)08-0067-06

Optimization of water supply network PMA partition by graph theory

GAO Jinliang, YAO Fang, YE Jian

(School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract: The water supply pipe network pressure management area (PMA) partition, which is pressure-control oriented and regional metrology considered, effectively controls the leakage rate of urban water supply network. PMA partition with graph theory is proposed in this study. First of all, to initially partition the water supply network and set the partition number with adaptive AP clustering algorithm and economic calculation. Secondly, Dijkstra algorithm is adopted to calculate the shortest path of each cluster center point to the source of the water and determine the position of each division of the water supply pipe, and then establish a partition boundary optimization model and apply simulated annealing algorithm to solve the model. Finally, combine some partitions properly with artificial expertise and form the final plan. This partition, computer algorithm oriented and combined with artificial expertise, embraces larger search space than the traditional artificial partition of trial and error and can guide the actual water supply network PMA partition.

Keywords: PMA partition; graph theory; AP clustering algorithm; Dijkstra algorithm; simulated annealing algorithm

近年来,供水管网分区成为国内外控漏研究领域的一大热点,国际上普遍认可这种"分而治之"的分区思想.将供水管网进行分区后,能够找到供水管 网漏失主要原因,由消极被动转变为积极主动地控 漏,有利于加强水质监测及压力管理^[1-4].国内外的 供水行业学者和研究人员都对供水管网分区控漏进 行了积极探究,研究的分区方法主要分为区域计量 分区、压力分区和管理分区.其中,压力分区被认为 是最具有经济效益的方法.城市供水管网压力分区 技术最早起源于 20 世纪 80 年代,以供水管网漏损

- 基金项目:国家自然科学基金(51278148);国家水体污染控制与治 理科技重大专项(2014ZX07405002);广东省教育部产学 研结合项目(2011A090200040)
- 作者简介:高金良(1971-),男,副教授,硕士生导师
- 通信作者:姚 芳, yaofang0525@163.com

随着水压上升而增大的规律为理论基础,依据地形、 水压分布等因素将管网分为若干压力管理区,通过 对所有或部分管理区进行压力控制,降低管网的平 均压力实现减少管网漏失等目的. May^[5]和 Godwin^[6]指出供水管网中漏失总量与压力呈指数关 系,可以通过降低整个管网或局部区域压力来降低 漏失水量;Stering^[7]将供水管网划分为若干个压力 管理区域,通过控制阀门的开启,实现供水管网压力 的优化控制.我国对供水管网压力分区的研究起步 较晚,崔建国等^[8]通过对节点压力、压力变化灵敏 度及管网的供水分界线的分析,综合考虑管网布置 区的规划和地形情况,对复杂管网进行分区管理;周 玉文等^[9]提出应综合考虑区域计量分区原则、压力 分区原则及管理分区原则进行分区规划的新思路, 并对分区改造后的管网进行了模拟分析.

收稿日期: 2015-11-07

一般来说,管网的爆管率、漏失量、管件及其他 设备的故障率均与管网中水压存在正相关性^[10].实 时掌握管网水压分布情况对于控制管网漏失^[11]、降 低爆管事故发生率及供水能耗具有重要意义^[12],而 供水管网 PMA 分区是压力分区控制的基础.PMA 分区是并行分区,区域之间不存在对下一区域串联 供水的情况,该情况下形成的分区可以对每个区域 单独进行压力控制.同时,与传统的人工试错分区方 法相比,PMA 分区具有更大的搜索空间,能提高分 区适用性.本文结合工程实际,综合运用图论的思 想,将供水管网转化为图的结构,对供水管网进行 PMA 分区.

1 PMA 分区

供水管网的分区数目直接影响分区方案的优 劣.分区数目少,供水管网的压力管理不彻底,会导 致许多节点压力过高,降低降漏效果;分区数目多, 投资费用增加,且对供水管网拓扑结构造成扰动,易 导致供水不稳定.本文用自适应 AP 聚类算法并结 合经济效益对供水管网进行初步分区,确定分区数 目.在分区过程中,投资费用主要指安装减压站费 用.如图1所示,投资费用与分区数目呈线性关系, 经济效益开始随分区数目的增加而增加较快,逐渐 增速变缓,因此,投资回报与分区数目的关系呈向下 抛物线关系. 自适应 AP 聚类算法由 Fery B J 和 Dueck D于 2007 年首次提出^[13].该算法不需要指定 聚类数目,而是在算法运行过程中设定图中所有点 到其类中心点的距离之和为目标函数,随着迭代的 进行,不断搜索与变换聚类中心点的位置与数目,使 目标函数最小^[14].本文利用自适应 AP 聚类算法的 特点,合理地确定分区数目,使投资效益最大化.

Fig.1 Relationship between partition number and investment benefit 确定分区数目时,以用水节点的 X 坐标、Y 坐标和自由水头这 3 个参数进行归一化计算后用于定义节点的三维位置.算法开始时需设定 P_i值,通常 P_i为 *i* 节点与其他所有节点相似度的平均值,也可根据需要自行设定值,值越大则聚类数目越多,反之,值 越小则聚类数目越少^[15].由于聚类前每个节点都具

有成为聚类中心的可能性,开始定义所有节点的 P_i 均相等.输入这些参数进行第一次聚类运算,得到各 个点的类归属和聚类数目,计算各个类中节点所具 有的降漏潜力,从而得到这种聚类方案下的经济效 益,结合投资回收期确定分区数目是否可行,进而调 整 P 值进行下一次 AP 聚类,直到计算得出使投资 回报期最短的初步聚类方案.

2 确定供水管网 PMA 分区区域入口

供水管网 PMA 分区是不完全分区模式.本文采 用邻接矩阵表示管网拓扑,运用迪杰斯特拉 (Dijkstra)算法^[16]计算聚类中心到水源的最短路 径,并将最短路径定义为各个区域的供水入口.供水 管网的主干管部分不进行区域划分,但初步分区时 所有节点均参与聚类,最后需剔除节点大多分布在 主干管上的区域.计算步骤如下^[17]:

1)初始化 S 集合,此时集合 S 中只含有单一水 源点 v₀,集合 T 中则包含拓扑图中除水源点 v₀外的 所有顶点,若供水管网模型中有 m 个水源,则运用 迪杰斯特拉算法分别计算 m 次;

2) 计算集合 T 中各顶点到水源点 v₀的距离,将 距离最小的顶点 u 加入到集合 S 中;

3) 计算顶点 u 到集合 T 中各顶点的距离,若经 过顶点 u 到顶点 t 的距离值比原来不经过顶点 u 到 水源点 v₀的距离值小,则修改 t 的距离值;

4)重复步骤2)和3)直到供水管网拓扑图中所 有的顶点都由集合 T转移到集合 S中,算法结束.

3 区域边界优化模型建立及求解

确定区域入口后,若此时直接对聚类边界进行 关阀,将会有大量节点无法供水,这对供水管网扰动 太多.此时需要对分区边界进行优化,以减小对管网 的扰动,实现分区.

3.1 区域边界优化模型

供水管网分区的基本要求是保证其供水安全 性,即分区后供水管网中所有节点均能与水源节点 连通并保证其供水的连通性.初步聚类后,需要对各 个初步分区进行节点连通性判断,通过改变孤立节 点的类归属,保证各个分区节点全连通.各个类中的 节点全部连通后,可通过边界优化,尽量将分区对管 网的扰动程度降到最低.本文建立一个拓扑离散优 化模型,以确定分区边界.

1)优化变量.优化模型的变量为分区边界点的 类归属.然而分区边界的点并不固定,优化过程中随 着某节点类归属的变化,周围节点就有可能从非分 区边界点变为分区边界点.因此,该模型以供水管网 拓扑图中所有节点的类归属作为优化变量,类归属 的数量固定不变,由 AP 聚类算法得出.所有节点的 类归属矩阵如下

$$idx = [a_1, a_2, \cdots, a_{n-1}, a_n].$$
 (1)

式中: $a_1, a_2, \dots, a_{n-1}, a_n \in \{C_1, C_2, \dots, C_{n-1}, C_n\}; a_i$ 为 第 *i* 个节点的类归属编号; C_i 为第 *j* 类的编号.

2)目标函数.确定分区边界的目的是使分区可 行,因此,需要降低分区对原管网的扰动.此时应尽 可能地找出分区边界上流量较小的管段,关闭这样 的管段对管网供水影响较小.定义管段流量作为全 管网邻接矩阵的权值,目标函数为使所有边界管段 的权值之和最小,适应度函数如下

 $f(idx) = \min\{sum(f_{edge})\}.$ (2) 式中: f_{edge} 为边界管段的流量,最短路径管段流量不 参与目标函数计算,L/s.

但是上节已建立的各个节点的最短路径结构构成了供水管网最基本的拓扑模式,且最短路径通常 会成为区域之间的连接管段.因此,在分区边界优化 过程中,为了不干扰优化结果,最短路径管段流量直 接记为0.

3)约束条件.优化过程中,可通过保证各个类所 有节点的连通性来确保管网的供水安全性,因此,在 优化迭代过程中约束条件为每一代聚类中心点与该 类内部所有节点的连通性必须保证.

3.2 区域边界优化模型求解

建立的模型属于离散变量拓扑优化模型.优化 过程中,拓扑节点的属性需要不断改变,并且每次迭 代过程需要随机对拓扑节点属性进行扰动,从而挑 选出最佳种群进行下一次迭代,模拟退火算法能够 很好地解决该问题.模拟退火(simulated annealing) 算法是 1982 年 Kirkpatrick 等^[18-19]提出的一种针对 NP 完全问题的算法.本节在初步聚类的基础上,将 初步聚类结果作为模拟退火算法的初始解,运用标 准模拟退火算法优化局部区域(分区边界部分),通 过迭代得到最优方案,模拟算法中的相关参数在工 程案例中设置.

4 分区合并

供水管网分区边界优化完成后,关闭所有的边 界管段进行水力计算,此时由于关闭管段过多,极易 导致水力条件无法满足用户需求.因此,结合人工经 验对部分区域进行合并,保证供水要求.合并形式主 要为纵向合并和横向合并.初步分区并计算最短路 径后,若有两个聚类中心共用一条供水路径,则对供 水管网分区进行纵向合并,以保证主干管直接向所 有区域供水,如图 2 所示;若分区之间连接管段较 多,完全关断会导致局部供水压力不足,此时需要对 这两个分区进行横向合并,合并后可以两个入口综 合控压,也可以再通过最短路径计算出一条供水管 线,如图3所示.

图 2 分区纵向合并示意

5 工程案例

本文运用 Y 市的实际供水管网,收集其供水 管网运行基础信息,得出最高时和最低时供水管 网自由水头分布,结果见图 4、5.可以看出,为满足 供水管网末端压力供给,整个管网压力偏高.过高 的压力是本市漏失严重的重要原因.因此,结合图 论对 Y 市供水管网进行 PMA 分区,划分出具有降 压潜力的区域实施压力控制,探索该方法的可行 性与适用性.

图 4 用水最高时供水管网自由水头分布 Fig.4 Free head of the highest time

图 5 用水最低时供水管网自由水头分布

Fig.5 Free head of the lowest time

5.1 AP 聚类初步分区确定分区数目

结合实际工程进行调研,Y 市水司制水成本为 0.65 元/t,减压站的购置和安装的总费用为 20 万 元,压力控制设备年运行费用为 1 万元,当地要求供 水压力最低不得低于 20 m 自由水头.优化过程中, 分区数降到 20 以内时,管道改造费用为 0;分区数 在 20 以上时,管道改造费用随着分区数的增加呈指 数级增涨.

建立的优化模型变量为自适应 AP 聚类算法中的 P 值,优化目标为最大化年经济收益.因为变量单一,运用进退法依次计算 P 值,P 的初始值按 AP 聚 类算法默认值,取-0.063 4,初始步长为 0.1,经济函数出现折点后步长逐步减半迭代.最终优化结果:P 取值为-2.292 8,投资回收期为 1.8 a,分区数为 17. 优化过程各变量如图 6 所示.

Fig.6 Result of economics combined with AP clustering algorithm AP 聚类算法依据节点的 X 坐标, Y 坐标和自由 水头这 3 个属性进行聚类, P=-2.292 8 时, 最终得 到的初步分区结果如图 7 所示, 管网被划分为 17 个 区域, 分别用不同颜色表示.

图 7 初步聚类结果 Fig.7 Preliminary partition result

5.2 聚类中心点到水源的最短路径

初步聚类得到 17 个区域的聚类中心后,分别计 算 17 个聚类中心点到水源点的最短路径.将管道的 水头损失作为最短路径计算中点与点之间的权值, 运用迪杰斯特拉算法计算各个聚类中心点到两个水 源的最短路径,最短路径的长度即水头损失之和,结 果如表 1 所示.可以看出,大部分聚类中心点到两个 水厂的最短路径均相同,因此,无论从到哪个水源考 虑,均不影响区域入口的确定.

表1 聚类中心点到两个水源点的最短路径长度

Tab.1 Shortest path from clustering center to the two water source

类编号	节点编号	到第一水厂最 短路径长度/m	到第二水厂最 短路径长度/m
1	2 571	4.299 654	7.738 481
2	7 591	4.392 645	7.831 472
3	8 603	9.229 041	10.973 990
4	8 777	5.570 809	9.009 635
5	12 491	2.483 682	5.922 509
6	20 355	4.920 983	8.359 809
7	21 462	2.203 216	5.657 158
8	25 889	1.458 040	4.887 281
9	26 258	2.011 419	3.670 348
10	26 366	3.083 273	4.828 222
11	31 898	5.205 412	8.644 238
12	32 102	7.927 301	11.366 130
13	41 126	5.415 440	8.856 311
14	41 286	3.085 164	6.523 990
15	41 360	0.926 913	2.978 746
16	41 699	7.010 608	10.449 430
17	41 773	12.434 510	15.873 340

5.3 分区边界优化模型

初步分区及分区入口确定后,运用模拟退火算 法对分区边界进行优化,优化变量为管网中所有节 点的类归属;适应度函数为划分的17个区域之间所 有边界管段的流量之和;约束条件为优化过程中必 须保持每个区域内所有节点相互连通.最大迭代代 数设置为300,终止条件设置为连续20代不接受新 解则终止迭代.模拟退火算法迭代过程中适应度函 数终值总流量为42.94 L/s.最优解中各区域间管段 连接数如表2所示.

5.4 分区合并

分区优化边界确定后,此时若将所有区域间连 接管段均关闭,还是会导致水力条件无法满足供水 要求,因此,需要结合人工经验对分区进行适当合 并.此时会有部分区域的节点完全分布在主干管上, 这种分布在主干管上的区域无法进行压力控制,不 作 PMA 分区处理.

表 2	区域间	连接	管段数量	
-----	-----	----	------	--

Tab.2 Number of connected pipes in regions

编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	0	0	0	4	2	2	9	0	0	0	0	0	13	13	0	1	0
2	0	0	0	0	5	2	0	4	0	0	9	7	0	0	0	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4	4	0	0	0	0	5	0	0	0	0	0	0	0	0	0	4	0
5	2	5	0	0	0	4	2	7	0	0	0	2	0	23	0	0	0
6	2	2	0	5	4	0	0	0	0	0	1	0	0	0	0	23	5
7	9	0	0	0	2	0	0	7	2	0	0	0	17	9	0	0	0
8	0	4	0	0	7	0	7	0	0	4	0	6	0	2	1	0	0
9	0	0	0	0	0	0	2	0	0	0	0	0	2	0	1	0	0
10	0	0	0	0	0	0	0	4	0	0	0	0	0	0	9	0	3
11	0	9	0	0	0	1	0	0	0	0	0	9	0	0	1	2	2
12	0	7	0	0	2	0	0	6	0	0	9	0	0	0	0	0	8
13	13	0	0	0	0	0	17	0	2	0	0	0	0	2	0	0	0
14	13	0	0	0	23	0	9	2	0	0	0	0	2	0	0	0	0
15	0	0	1	0	0	0	0	1	1	9	1	0	0	0	0	0	0
16	1	1	0	4	0	23	0	0	0	0	2	0	0	0	0	0	4
17	0	0	0	0	0	5	0	0	0	3	2	8	0	0	0	4	0

由表2可以看出,6和16、5和14、1和13、1和 14、7和13这几个分区之间管段连接数较多.最短路 径结构以及聚类中心点类编号如图 8 所示,可以看 出,这些管段连接数较多的区域在空间拓扑结构也通 常是邻近区域,可以进行合并.2和12分区分布在同 一条主干管上,应首先进行合并区域,17节点数过 少,不适合单独形成分区,2、12分区管段连接数为8 条管段,因此,2、12、17分区合并为一个区域;管段相 互连接较多应该一起合并的有1、5、7、13、14这5个 分区,分区4在这5个分区供水后端,因此,将1、4、5、 7、13、14合并为一个分区;6和16由于连接管段数过 多,若完全关断这些管段会导致供水压力不足,将这 两个区域进行合并,合并后该区域通过两条主管线供 水,若有压力富裕,可在两条管线上均安装压力控制 设备:分区9和15的大部分节点均分布在主干管上, 并且靠近水源,这两个区域无法单独进行压力控制, 因此,不作分区处理.分区完全合并后,共形成7个 PMA 分区.最终分区结果如图 9 所示.

Fig.8 Topology structure of the shortest paths

5.5 分区结果分析

分区完成后,将区域之间的连接管段关闭后得 到供水管网日用水量最高时和最低时供水管网自由 水头分布,如图 10、11 所示.比较图 10、11 和图 4、5 可以看出,供水管网进行分区后,用水量最低时和最 高时的自由水头均呈一定程度下降.此时对各个分 区的压力统计结果如表 3 所示.可以看出,7 个分区 的压力归一化方差均小于 0.4,符合要求.Y 市供水 管网要求的自由水头值必须大于 20 m,从表 3 可以 看出,分区形成后满足供水要求.所以,该分区策略 可用于指导实际供水管网 PMA 分区,并能够取得良 好漏失控制效果.

Fig.9 Final partitioning result

图 10 分区后用水量最高时自由水头分布 Fig.10 Highest free head distribution after partitioning

图 11 分区后用水量最低时自由水头分布 Fig.11 Lowest free head distribution after partitioning

表 3 各个分区平均压力统计

Tab.3	Statistical average pr	ressure of each p	artition
分区	压力	压力归一	最小自由
编号	均值/m	化方差	水头/m
1	25.82	0.26	22.90
2	27.90	0.38	23.55
3	25.12	0.35	21.96
4	26.91	0.17	23.16
5	26.63	0.21	22.97
6	26.09	0.33	22.49
7	26.27	0.29	22.80

6 结 论

1)结合图论提出一种结合工程实践的自动 PMA分区方法,首次将供水管网PMA分区总结为3 个方面,即分区数目、分区人口和分区边界.并运用 相应算法解决这3个问题,形成最终的可行方案.

2)现有的关于供水管网分区研究通常都是指 定分区数目后再分区^[20],但对分区数目不能给出合 理解释.本文首次将经济计算引入到分区数目的确 定中,提出了分区数目确定的合理化方法,提供了一 种新的计算思路,具有很强的工程实用价值.

3)分区边界形成后,结合人工经验进行分区合 并来保证供水安全性,分区合并的原则是尽可能地 保留分区,对水力条件无法满足或供水路径冲突无 法形成 PMA 分区的部分进行分区合并.

参考文献

- [1] DI NARDO A, DI NATALE M, MUSMARRA D, et al. A district sectorization for water network protection from intentional contamination[J]. Procedia Engineering, 2014,70:515-524.
- [2] DI NARDO A, DI NATALE M, SANTONASTASO G F, et al. Divide and conquer partitioning techniques for smart water networks
 [J]. Procedia Engineering, 2014,89:1176-1183.
- [3] DE PAOLA F, FONTANA N, GALDIERO E, et al. Optimaldesign of district metered areas in water distribution networks[J]. Procedia Engineering, 2014, 70:449–457.
- [4] MAMADE A, LOUREIRO D, COVAS D, et al. Spatial andtemporal forecasting of water consumption at the DMA level using extensive measurements[J]. Procedia Engineering, 2014,70:1063-1073.
- [5] MAY J. Pressuredepend leakage [J]. World Water Environment Engineering, 1994(10):15-19.
- $[\,6\,]$ GODWIN S J. The results of the experimental program on leakage and leakage control[J]. Water Research Center, $1980(\,56):52{-}154.$
- [7] STERING A. Leakagereduction by optimized control of valves in water networks[J]. Trans Inst MC, 1984,127(13):67-68.
- [8] 崔建国,于庆江,梁海荣.城市给水系统优化调度中的管网分区 方法[J].太原理工大学学报,2004,5(35):605-608. CUIJG,YUQJ,LIANGHR.Study on the method dividing districts of water distribution network in optimal dispatch of city water system[J].Journal of Taituan University of Technology,2004, 35(5):605-608.
- [9] 周玉文, 刁克功, 吴珊, 等. 城市供水管网分区初步研究[C] // 供

水管网信息化管理与检测技术应用研讨会论文集.北京:中国 建筑工业出版社,2005:213-221.

ZHOU Y W, DIAO K G, WU S, et al. Preliminary study of urban water supply network partition [C]//Civil Engineering Society of China.Collected Papers on Application of Information Management and Detection Technology System for Water Supply Network Rap Session. Beijing:China Building Industry Press, 2005:213-221.

- [10]张世泽,袁一星,李玉华.城市供水管网优化设计两步法[J].哈尔滨工业大学学报,2009,41(4):111-117.
 ZHANG S Z, YUAN Y X, LI Y H. Two-step method for optimal design of water distribution system[J]. Journal of Harbin Institute of Technology, 2009, 41(4):111-117.
- [11] 董深,吕谋,盛泽斌,等. 基于遗传算法的供水管网反问题流失定位[J]. 哈尔滨工业大学学报,2013,45(2):106-128.
 DONG S, LU M, SHENG Z B, et al. Inverse transient leakage location of water supply network based on genetic algorithm [J]. Journal of Harbin Institute of Technology,2013,45(2):106-128.
- [12] MOUNCE S R, BOXALL J B, MACHELL J. Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows [J]. Journal of Water Resources Planning and Management, 2010, 136(3):309-318.
- [13] FERY B J, DUDCK D. Clustering by passing messages between data points[J].Science, 2007, 315 (5814):972-976.
- [14]郭秀娟,陈莹. AP 聚类算法的分析与应用[J]. 吉林建筑大学学报, 2013,30(4):58-61.
 GUO X J, CHEN Y. Analysis and application on AP clustering algorithm[J]. Journal of Jilin Jianzhu University, 2013,30(4): 58-61.
- [15]何晏成. 基于近邻传播和凝聚层次的文本聚类方法[D]. 哈尔滨:哈尔滨工业大学, 2010:60.
 HE Y C. A document clustering method based on affinity

propagation and agglomerative hierarchical clustering [D]. Harbin: Harbin Institute of Technology, 2010;60.

[16] 张念.用 Dijkstra 算法实现对整车配送线路的优化[J].中国水运(理论版),2007,5(5):141-142.
 ZHANG N. Implement the optimization of vehicle distribution line

based on Dijkstra algorithm [J]. China Water Transport, 2007,5 (5):141-142.

[17]杨蔓. 最短路径算法在煤矿安全分区分析中的应用研究[D]. 西安:西安科技大学, 2009:77.

YANG M. The study on the analysis of shortest path algorithm in the coal mine safety subarea [D]. Xi'an: Xi'an University of Science and Technology, 2009:77.

- [18] CARSTEN D. Optical design of multilayer achromatic waveplate by simulated annealing algorithm [J]. Chinese Journal of Astronomy and Astrophysics, 2008(3):349-361.
- [19]张红娟. 基于非格点模型的蛋白质结构预测研究[D]. 大连:大连理工大学, 2006:55.

ZHANG H J. The research on the protein structure prediction based on the off-lattice protein model[D]. Danlian: Danlian University of Technology,2006:55.

[20]何忠华,袁一星. 基于分区模型的城市供水管网压力监测点布置[J]. 哈尔滨工业大学学报,2014,46(10):37-41.
HE Z H, YUAN Y X. Layout of pressure monitoring points in urban water distribution system based on district model [J]. Journal of Harbin Institute of Technology,2014,46(10):37-41.