DOI:10.11918/j.issn.0367-6234.201604135

低真空度下四极杆质量分析器稳定区的数值计算

姜佩贺1,赵占锋2,陈焕文3,周志权1,2

(1. 哈尔滨工业大学 电子与信息工程学院,哈尔滨 150001;2.哈尔滨工业大学(威海) 信息与电气工程学院,山东 威海 264209;3.东华理工大学 江西省质谱科学与仪器重点实验室,南昌 330013)

摘 要:为实现质谱仪在低真空度下进行质量分析,推导了有阻力条件下的离子运动方程,得到低真空度下有阻尼项的 Mathieu 方程,利用五阶龙格-库塔数值方法在 MATLAB 中求解离子在四极杆中的运动特性和不同阻尼条件下的稳定区.提出 了利用数值方法确定低真空度下四极杆中离子运动稳定区的方法,给出了第一、第二以及高阶稳定区随阻尼系数 k 的变化趋势.结果表明:随着真空度的降低,稳定区变大并连接在一起;通过调整离子操作模式,可以完成质量分析;提高扫描频率可以 抵消真空度降低所带来的影响.

关键词:低真空质量分析;四极杆;稳定区;Mathieu方程;龙格-库塔

中图分类号: TH843 文献标志码: A 文章编号: 0367-6234(2017)05-0031-05

Numerical method for stability region in quadrupole at low vacuum

JIANG Peihe¹, ZHAO Zhanfeng², CHEN Huanwen³, ZHOU Zhiquan^{1,2}

(1.School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; 2.School of Information and Electrical Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China; 3.Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China)

Abstract: In order to achieve the mass spectrum at low vacuum, the equation of ion motion with resistance is derived. Pressure effects are treated by adding a drag term to the Mathieu function which is calculated based on fifth-order Runge-Kutta in MATLAB. The effects of gas pressure on stability regions and ion motion are described. A numerical method for getting stability regions is proposed. The first, the second and the higher stability regions in the presence of the damping force are given. The results show that the damping force caused by gas pressure enlarges the stability regions. The initially separate stability zones merge together for higher pressure. In low vacuum conditions, mass analysis can be performed by altering operation mode. The pressure effects can be reduced by increasing the frequency.

Keywords: mass analysis at low vacuum; quadrupole; stability region; Mathieu function; Runge-Kutta

质谱仪中质量分析器所需的高真空条件阻碍了 质谱仪的小型化与便携化.如果在保证必要性能的 同时,在低真空条件下进行质量分析,可以极大地简 化真空系统和离子传输系统、减小质谱仪的体积、降 低功耗和成本,使其可以更广泛地应用于现场实时 检测.低真空下的质量分析将引领小型质谱仪的下 一次革新^[1].

四极杆质量分析器是目前最成熟、应用最广泛的质量分析器之一,它由四根平行的金属杆组成,通过在四根金属杆上施加交变电压,可以在其内部形成马鞍形的四极场,实现不同质荷比离子的选择. 离子在四极场中的运动分为稳定和不稳定两种情

- 基金项目: 国家自然科学基金青年科学基金(21505028); 山东省自然科学基金(ZR2015BQ004)
- **作者简介:**姜佩贺(1988—),男,博士研究生; 周志权(1973—),男,教授,博士生导师
- 通信作者:周志权,zzq@hitwh.edu.cn

况^[2],稳定区决定了质谱仪工作的质量扫描线,因此,稳定区的确定是进行质量分析的前提.

针对低真空度下稳定区和质量分析机理, Whetten^[3]指出有阻力时粒子的运动仍可以用 Mathieu 方程进行描述,并给出了粒子的运动模型, 但没有讨论稳定区的变化;Hasegawa 等^[4]利用数学 分析方法分析了有阻力情况下稳定区的变化,但仅 讨论了第一和第二稳定区;Whitten 等^[5]讨论了第一 稳定区的变化,讨论更侧重于数学上对离子运动频 率的分析.此外,Vinitsky 等^[6]观察了四极场中离子 的异形运动,利用非线性力和非线性场对此进行了 解释;Xu 等^[7-8]利用碰撞模型和实验,讨论了阻力 对离子的捕获、出射以及分辨率的影响.

作为低真空下进行质量分析的理论基础,稳定 区随真空度变化的研究和一套精度高且适用于实际 工程需求的稳定区确定方法是不可或缺的,而现有 研究均没有相关的讨论.基于此,本文针对四极杆

收稿日期:2016-04-25

(3)

质量分析器,利用高精度数值方法计算不同阻尼条件下的离子运动轨迹,进而得到不同阻尼条件下第 一、第二以及高阶稳定区.同时,讨论阻尼系数的影 响因素,分析相应的质量分析机理.

1 模型与计算

1.1 有阻尼条件下的离子运动

在四极杆质量分析器中,如果两个相对电极的 距离为 $2r_0$,在两对电极上分别施加电势+ φ_0 和 $-\varphi_0$,则可以在质量分析器中形成四极场,其中 φ_0 = $U - V \cos \Omega t$,U为所加电势的直流分量,V为交流分 量的幅度, Ω 为交流分量的角频率,t为时间.根据拉 普拉斯方程及边界条件,四极场中(x,y)点的电势为

$$\varphi(x,y) = \frac{\varphi_0}{r_0^2} (x^2 - y^2) = \frac{(x^2 - y^2) (U - V \cos \Omega t)}{r_0^2}.$$

以 u 代表 x 或 y 方向,如果离子在 u 方向的运动 速度为 v_u ,根据斯托克斯定律,离子在 u 方向所受到 的阻力为 $f_u = -Dv_u$,其中 D 为粘滞系数.在 u 方向, 由力的平衡有

$$m \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + D \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{2e(U - V\cos\Omega t)}{r_0^2} u = 0,$$

$$\Leftrightarrow \xi = \Omega t/2, \ \bar{\pi}$$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} + k \frac{\mathrm{d}u}{\mathrm{d}\xi} + (a_u - 2q_u\cos 2\xi)u = 0, \quad (1)$$

式中:

$$a_u = a_x = -a_y = \frac{8eU}{mr_0^2 \Omega^2}, q_u = q_x = -q_y = \frac{4eV}{mr_0^2 \Omega^2}, k = \frac{D}{m} \cdot \frac{1}{\Omega}.$$
(2)

式(1) 描述了低真空环境中有阻尼的离子运动, 为带有阻尼项的 Mathieu 方程, 与标准 Mathieu 方程 相比增加了 $kdu/d\xi$ 的阻尼项, 称 k 为阻尼系数, 与压 强有关, 当 k = 0 时, 即转化为标准 Mathieu 方程.

1.2 带阻尼项 Mathieu 方程的数值解法

带阻尼项 Mathieu 方程为二阶微分方程,利用 数学分析的方法求解它的稳定区是十分复杂的.若 将其转化为差分方程,利用计算机就可以快速计算 其稳定区,更适用于工程需要.龙格-库塔方法是一 种高精度单步数值方法,在离子轨迹仿真中,四阶算 法是最常用的算法,但由于阻力的存在,离子轨迹变 得复杂,且高阶稳定区的范围很小,因此,需要更高 精度的算法来确定有阻力条件下的稳定区.研究表 明,五阶龙格-库塔法精度高于四阶的约 11 倍^[9], 且稳定性和收敛性明显优于四阶算法.

令 $v = du/d\xi$, 可将方程(1)转化为一阶微分方

程组,应用 Butcher RK5 形式^[9],得 $\begin{cases} u(n+1) = u(n) + \frac{h}{90}(7M_1 + 32M_3 + 12M_4 + 32M_5 + 7M_6), \\ (n+1) = u(n) + \frac{h}{90}(7M_1 + 32M_3 + 12M_4 + 32M_5 + 7M_6), \end{cases}$

$$v(n + 1) = v(n) + \frac{1}{90}(7N_1 + 32N_3 + 12N_4 + 32N_5 + 7N_6),$$

其中, u 表示离子运动的位移, v 表示离子运动对频 率归一化后的速度, h 为计算步长.参数 M_n 与 N_n 的 数学表达式为

$$M_{1} = v(n),$$

$$N_{1} = -\{a + 2q\cos 2[(n-1)h]\}u(n) + kv(n),$$

$$M_{2} = v(n) + \frac{h}{4}N_{1},$$

$$N_{2} = -\{a + 2q\cos 2[(n-1)h + \frac{h}{4}]\}[u(n) + \frac{h}{4}]\}u(n) + \frac{h}{4}u(n) + \frac{h}{4}u(n)$$

$$N_{2} = - \{a + 2q\cos 2\lfloor (n - 1)h + \frac{1}{4} \rfloor \} \lfloor u(n) + \frac{h}{4}M_{1} \rfloor + k [v(n) + \frac{h}{4}N_{1}],$$

$$M_{2} = v(n) + \frac{h}{4}(N_{1} + N_{2})$$

$$N_{3} = - \{a + 2q\cos 2[(n - 1)h + \frac{h}{4}]\} [u(n) + \frac{h}{8}(M_{1} + M_{2})] + k[v(n) + \frac{h}{8}(N_{1} + N_{2})]$$

$$\begin{split} M_4 &= v(n) - \frac{h}{2}N_2 + hN_3, \\ N_4 &= -\left\{a + 2q\cos 2\left[(n-1)h + \frac{h}{2}\right]\right\} \left[u(n) + hM_3 - \frac{h}{2}M_2\right] + k\left[v(n) - \frac{h}{2}N_2 + hN_3\right], \end{split}$$

 $M_5 = v(n) + \frac{h}{16}(3N_1 + 9N_4),$

$$N_{5} = - \left\{ a + 2q\cos 2\left[(n - 1)h + \frac{3h}{4} \right] \right\} \left[u(n) + \frac{h}{16} (3M_{1} + 9M_{4}) \right] + k \left[v(n) + \frac{h}{16} (3N_{1} + 9N_{4}) \right],$$

$$\begin{split} M_6 &= v(n) + \frac{n}{7} (-3N_1 + 2N_2 + 12N_3 - 12N_4 + 8N_5), \\ N_6 &= - \left\{ a + 2q \cos 2 \left[(n-1)h + h \right] \right\} \left[u(n) + \frac{h}{7} (-3M_1 + 2M_2 + 12M_3 - 12M_4 + 8M_5) \right] + k \left[v(n) + \frac{h}{7} (-3N_1 + 2N_2 + 12N_3 - 12N_4 + 8N_5) \right]. \end{split}$$

在表达式中, a 和 q 可直接进行赋值, 如第一稳 定区与 q 轴的交点 a = 0, q = 0.908, 也可以根据 式(2) 通过指定扫描电压 U 和 V、扫描频率 Ω 和质荷 比 m/e, 计算后得到相应的 a 和 q. 其中, 扫描频率一 般以 Hz 进行表述.

在 MATLAB 中,对于不同的 a 和 q,给定计算步长 h,离子初始位置 u(0),离子初速度 v(0),根据式(3) 经 过 n 次迭代计算,即可得到不同 a 和 q 值下离子运动轨 迹矩阵 u 和归一化速度矩阵 v.此外,可以通过对 u 进 行快速傅里叶变换得到轨迹的频谱特性;根据 du/dt = $(\Omega/2) du/d\xi$ 可得到离子的运动速度特性.

2 结果与讨论

2.1 真空条件下离子运动的仿真

仿真条件如下:电极距离 $r_0 = 10$ mm,离子初始 位置 $u_x = u_y = 0.2r_0$,初速度 $v_x = v_y = 0$,步长 h =0.01π,扫描电压 U = 1.23 kV、V = 8.77 kV,扫描频 率 $\Omega = 1$ MHz,阻尼系数 k = 0.在此条件下,对于质 荷比为 1 304 的离子 a = 0.18,q = 0.64,由四极杆基 本理论可知该点位于稳定区内部,运动是稳定的. 图 1 给出了离子在 y 方向的运动轨迹、速度以及频 谱特性,图 2 给出了离子在 x - y平面的运动轨迹.

Fig.1 Characteristics of ion motion when a = 0.18, q = 0.64,

Fig.2 Trajectory of ion motion when a = 0.18, q = 0.64, k = 0由图1可知,离子运动为带有扰动的正弦周期

振荡,由能量守恒可知,离子的最大振幅为初始位置.由频谱特性可知,离子的运动是基频和高次频

率振荡运动的叠加,基频近似为 80 kHz,高次频率 分别为 0.92 和 1.08 MHz,离子振荡运动基频占主要 成分.离子运动稳定,与理论相符.

其他条件不变,改变扫描电压 $U \approx V$,使 a = 0, q = 1.3,由于 q 值大于真空条件下稳定区的边界 (0,0.908),运动是不稳定的.图3、图4给出了该条 件下离子的运动特性仿真结果,离子在四极场中从 起点(x, y) = (2, 2)开始运动,很快从x = -10 mm 的边界飞出四极杆,不能被检测.

2.2 有阻尼条件下离子运动的仿真

针对图 3 所示的仿真条件,其他条件不变,改变 阻尼系数,当 k =1 时离子的运动特性如图 5、图 6 所 示.离子以(x,y) = (2,2)为起点开始运动,由于真空 度降低,离子与气体分子发生碰撞降低了离子的轴 向动能和径向发散度,最终趋于四极杆中心,运动是 稳定的,且运动具有一定的周期性.对比图 3 和图 5, 阻尼项的存在使离子的运动由不稳定变为稳定.

相同条件下, 阻尼系数 k 的变化使离子的运动 特性发生了变化.因此,k 值必然影响稳定区,进而 影响离子的操作模式.

2.3 不同阻尼系数下的稳定区

基本仿真条件不变,即电极距离 $r_0 = 10 \text{ mm}$,离 子初始位置 $u_x = u_y = 0.2r_0$,初速度 $v_x = v_y = 0$,步长 $h = 0.01\pi$. 针对不同的k值, 仿真不同(a, q)下的离 子运动轨迹, 对于离子飞行 5 ms 后振幅仍小于 r_0 的 (a, q)点标记稳定, 这样通过扫描 a 和 q即可得到 不同 k 值下的稳定区. 图 7 给出了当 k 在 0 到 1 变化 时, 第一稳定区的变化.

图 6 a=0, q=1.3, k=1 时 x-y 平面离子运动轨迹

Fig.6 Trajectory of ion motion when a = 0, q = 1.3, k = 1

Fig.7 The first stability regions under different damping coefficient 图 8 给出了当 *k* 从 1 到 6 变化时,不同 *k* 值下的稳 定区.图 8(a)中, *k* 值从 0 到 1 的变化使稳定区发生了 移动和扩展,这在第二稳定区尤为明显;图 8(b)中,当 *k* = 2 时,稳定区继续扩展,第一和第二稳定区连接到一 起,第三稳定区开始出现;随着 *k* 值的增大,稳定区表现 出持续变大并连接到一起、新的稳定区不断出现的趋势.

观察图 7 和图 8,稳定区随 k 的递增有两种变化 趋势:

1)随着 k 值的增加稳定区总体向右扩展,并多 个稳定区不断连接到一起,即 k 值增加,更大的 q 值 依旧可以使离子稳定运动.图 3 和图 5 所示的 a = 0, q = 1.3就是这样的一个例子,当 k = 0时,该点的 q 值较大,离子在四极场中获得了很大的能量,是一个 不稳定的发散运动,而当 k 值增大到 1 时,阻力的存 在减小了离子运动的能量,进而使运动稳定,且振幅 逐渐减小.

2) 在 q 值较小时,随着 k 值的增加,可以使离子 稳定运动的 a 值范围减小,因此,当 q 值较小时,对于 靠近稳定区边界的点,k 值的增加可能使离子由稳 定运动变为不稳定.

2.4 阻尼系数 k 的影响因素与离子操作模式

在实际的四极杆实验中,当真空度降低,稳定区 变化,对于同一种离子,利用原有的质量扫描线进行 实验,必将导致分辨率的下降.因此,为得到更优的 分辨率,必须改变扫描电压,根据当前真空度和扫描 频率所决定的稳定区,选择新的扫描线进行实验.

由式(2), k 是一个与粘滞系数 D、离子质量 m 和扫描频率 Ω 相关的物理量. 粘滞系数 D 与离子的 形状、背景气体的压强、碰撞粒子的相对速度、碰撞 频率等因素有关,因此很难精确计算 D,但一般可以 认为 D/m 项与压强具有线性关系^[5]. 文献[10]的 实验结果表明,对于质荷比为 84 的⁸⁴ Kr,以氦气作 为背景气体,当压强为 0.057 Pa 时, D/m 在数值上 约为 500. 因此, D/m 项可以近似表述为

$$\frac{D}{m}(p) \approx \frac{500}{0.057} p$$

图9给出了不同扫描频率下压强p与阻尼系数 k的关系.在扫描频率不变的条件下,阻尼系数k随 压强p线性增加.此外,相同压强下,k值与扫描频率 Ω有关,在高真空度下,D趋于0,扫描频率Ω的变化 几乎不会影响k.如果提高压强和扫描频率Ω,可以 削弱D项对k值的影响,有利于质量分析.

图 9 不同扫描频率下 p 与 k 的关系

3 结 论

1)针对低真空下的质量分析,根据有阻力条件 下离子的运动,得到了修正的马修方程,提出了利用 五阶龙格-库塔数值方法确定稳定区的方法.

2)得到了不同阻尼系数 k 下,第一、第二以及 高阶稳定区的变化趋势.随着阻尼系数 k 的增大,稳 定区发生变化,不断变大,并连接在一起,稳定区的 确定为确定质量扫描线和离子操作模式提供了理论 基础.

3) 阻尼系数 k 对稳定区有很大的影响,从数学 模型上看,提高扫描频率更有利于低真空度下的质 量分析.

参考文献

- [1] SNYDER D T, PULLIAM C J, OUYANG Z, et al. Miniature and fieldable mass spectrometers: recent advances [J]. Analytical Chemistry, 2015, 88 (1): 2 - 29. DOI: 10.1021/acs. analchem. 5b03070.
- MARCH R E. An introduction to quadrupole ion trap mass spectrometry[J]. Journal of Mass Spectrometry, 1997, 32(4): 351-369.
 DOI: 10.1002/(SICI)1096-9888(199704)32:4.
- [3] WHETTEN N R. Macroscopic particle motion in quadrupole fields
 [J]. Journal of Vacuum Science & Technology, 1974, 11(2): 515-518.
- [4] HASEGAWA T, UEHARA K. Dynamics of a single particle in a paul trap in the presence of the damping force[J]. Applied Physics B, 1995, 61(2): 159-163. DOI: 10.1007/BF01090937.
- [5] WHITTEN W B, REILLY P T A, RAMSEY J M. High-pressure ion trap mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2004, 18(15): 1749-1752. DOI: 10.1002/rcm.1549.
- [6] VINITSKY E A, BLACK E D, LIBBRECHT K G. Particle dynamics in damped nonlinear quadrupole ion traps[J]. American Journal of Physics, 2015, 83(4): 313–319. DOI: 10.1119/1.4902185.
- [7] XU W, SONG Q, SMITH S A, et al. Ion trap mass analysis at high pressure: a theoretical view[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(11): 2144-2153. DOI: 10.1016/j. jasms.2009.06.019.
- [8] SONG Q, XU W, SMITH S A, et al. Ion trap mass analysis at high pressure: an experimental characterization [J]. Journal of Mass Spectrometry, 2010, 45(1): 26–34. DOI: 10.1002/jms.1684.
- [9] 贺木易, 邵睿婷, 冯焱, 等. 离子阱质谱中离子轨迹算法研究
 [J]. 质谱学报, 2015, 36(3): 217-222. DOI: 10.7538/zpxb. youxian.2014.0070.
 HE Muyi, SHAO Ruiting, FENG Yan, et al. Study of the simula-

tion method about ion trajectory[J], Journal of Chinese Mass Spectrometry Society, 2015, 36(3): 217–222. DOI: 10.7538/zpxb. youxian.2014.0070.

[10] PLASS W R, GILL L A, BUI H A, et al. Ion mobility measurement by DC tomography in an RF quadrupole ion trap[J]. The Journal of Physical Chemistry A, 2000, 104(21): 5059-5065. DOI: 10. 1021/jp994356c.

(编辑 王小唯, 苗秀芝)