DOI:10.11918/j.issn.0367-6234.201607115

锥面共形阵列极化-DOA 估计的降维 MUSIC 算法

刘 帅,韩 勇,闫锋刚,金 铭

(哈尔滨工业大学(威海)信息与电气工程学院,山东 威海 264209)

摘 要:针对传统 MUSIC(multiple signal classification)算法在锥面共形阵列极化-DOA(direction of arrival)参数联合估计过程 中计算复杂度较高的问题,利用单极化阵元构造极化敏感锥面共形阵列,并建立阵列接收信号模型. 通过构造同极化接收子 阵,将导向矢量中空域信息和极化域信息去"耦合",在考虑阵元遮挡效应的条件下,结合秩损原理实现了基于降维 MUSIC 算 法的极化-DOA 多参数估计,减小了极化-DOA 参数估计的计算量. 通过计算机仿真证明了方法的有效性.

关键词: 锥面共形阵列;降维 MUSIC;极化-DOA 估计; 秩损原理;遮挡效应

中图分类号:TN911.7 文献标志码:A 文章编号:0367-6234(2017)05-0036-06

Polarization-DOA estimation for conical conformal array based on dimension reduced MUSIC

LIU Shuai, HAN Yong, YAN Fenggang, JIN Ming

(School of Information and Electrical Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, Shangdong, China)

Abstract: Focusing on the problem of high computation complexity of MUSIC algorithm which is used for joint polarization-DOA estimation of conical conformal array, the signal model of conical conformal array is established and is built by single polarizative elements. Through the building of same polarizative sub-array, the polarization and DOA information of steering vector is de-coupled, considering the shadow effectors of conformal array, dimension reduced MUSIC is derived by rank reduction theory, which realizes polarization-DOA estimation by less computation complexity. The method has been verified by computer simulations.

Keywords: conical conformal array; dimension reduced MUSIC; polarization-DOA estimation; rank reduction theory; shadow effectors

共形阵列^[1-5]是由共形载体上共形辐射单元构成的天线阵列.作为共形阵列的典型代表,锥面共形阵列具有利用孔径充分、节省空间、满足空气动力学要求、对极化信息敏感等特点,在电子侦察、电子对抗、航空航天及通信等领域有着广泛的应用前景.

目前对共形阵列的研究主要包括:共形辐射单 元设计及辐射特性研究^[1-2],共形天线阵列的分析 和综合优化^[3-5],以及共形阵列参数估计^[6-13].在共 形阵列参数估计方面,文献[6]考虑共形阵列天线 的多极化特性,基于四阶累积量和对阵列结构的设 计,结合 ESPRIT(estimation of signal parameters via rotational invariance techniques)算法实现三种(柱 面、锥面、球面)共形阵列条件下的盲极化 DOA 估 计;文献[7]针对共形阵列流形中 DOA 与极化参数 的"耦合",利用偶极子阵元在锥面和柱面共形载体 上合理布阵,使用 ESPRIT 算法实现了 DOA 和极化 参数的联合估计;文献[8]将任意基线算法扩展到 三维阵列,结合虚拟基线方法,利用子阵分割和矩阵 求逆的方法实现了共形阵列条件下的二维 DOA 估 计;文献[9]利用虚拟内插变换将共形阵列转换为 虚拟的线性阵列,并结合经典联合迭代自校正算法, 实现了阵列误差的自校正以及 DOA 的估计;文献 [10]利用 MUSIC 算法实现了共形阵列的极化-DOA 的联合估计;文献[11]利用柱面共形阵列的对 称性,结合 ESPRIT 实现了 DOA 和极化参数的估 计;文献[12]针对阵元互耦和遮挡效应,通过模式空 间变换和秩损理论,实现了柱面共形阵列的 DOA 估 计. 在共形阵列参数估计性能分析方面,文献[13] 推 导了 MUSIC 算法在共形阵列中的 DOA 参数估计方 差和克拉美-罗界,并通过仿真对比研究了 MUSIC 算法在面阵和共形阵列中的 DOA 估计精度.

在共形阵列的参数估计方面已有算法主要分为 两类:不同背景下的 DOA 参数估计^[6,8-9,12]以及极化 和 DOA 参数的联合估计^[7,10-11].在极化和 DOA 联合 估计算法方面,已有文献主要通过 ESPRIT 算法和 MUSIC 算法实现,其中 ESPRIT 算法对阵列形式有一

收稿日期: 2016-07-28

基金项目:中央高校基本科研业务费专项资金(HIT.NSRIF.201724)

作者简介:刘 帅(1980—),男,博士,副教授; 金 铭(1968—),男,教授,博士生导师

通信作者:刘 帅, liu_shuai_boy@163.com

定限制且需要进行参数配对,MUSIC 算法对阵列形式 限制较少,但需要进行四维参数搜索,计算复杂度较 高.针对以上问题,本文提出一种基于锥面共形阵列 的降维 MUSIC 算法,算法通过构造同极化接收子阵, 将导向矢量中的空域信息和极化信息去耦合,结合 "秩损"原理实现了极化-DOA 估计的降维 MUSIC 算 法,与文献[10]方法相比大大降低了极化-DOA 估计 算法的计算复杂度,目不需要进行参数配对,

1 锥面共形阵列信号模型

1.1 锥面共形阵列结构

锥面共形阵列的结构如图 1 所示,阵列由单极 化阵元构成,在圆锥顶点处存在一个阵元,其下有若 干圆环阵. 定义β为1/2 圆锥顶角,信号入射方向 θ、φ定义如图 1 所示,n为由上至下的圆环阵序号,d 为圆环阵的间距,过圆锥顶点沿锥面分布的 S1、S2、 S3等直线定义为锥面的母线,每层圆环阵共含 8 个 阵元,均位于相应的母线上,每层圆环阵中阵元序号 m以X 正轴为起点,按逆时针方向排列.

图1 锥面共形阵列示意

Fig.1 Conical conformal array structure 图 1 所示的锥面共形阵列,其阵元坐标为 $x_{nm} = nd \times \tan \beta \times \cos[2\pi(m-1)/8],$ $y_{nm} = nd \times \tan \beta \times \sin[2\pi(m-1)/8],$ $z_{nm} = -nd.$

1.2 锥面共形阵列信号模型

考虑如图 1 所示的锥面共形阵列:圆锥顶点处 有 1 个阵元,其他阵元分布在 L 条母线上,每条母线 有 K 个阵元,阵元数为 N = L × K + 1. 假设有 M 个信 号入射到锥面共形阵列上,则其接收信号模型可以 表示为

 $\boldsymbol{X}(t) = \tilde{\boldsymbol{A}}(\boldsymbol{\theta}, \boldsymbol{\varphi}, \boldsymbol{\gamma}, \boldsymbol{\eta}) \boldsymbol{S}(t) + \boldsymbol{N}(t).$

式中: X(t) 为阵列接收信号; S(t) 为信号矢量, N(t) 为噪声矢量; $A(\theta, \varphi, \gamma, \eta)$ 为阵列导向矢量, 具体形式为

$$\tilde{A}(\theta,\varphi,\gamma,\eta) = \left[\tilde{a}(\theta_1,\varphi_1,\gamma_1,\eta_1), \cdots, \tilde{a}(\theta_M,\varphi_M,\gamma_M,\eta_M)\right],\\ \tilde{a}(\theta_i,\varphi_i,\gamma_i,\eta_i) = a_s(\theta_i,\varphi_i) \odot a_p(\theta_i,\varphi_i,\gamma_i,\eta_i), \quad (1)$$

$$\mathbf{a}_{s}(\theta_{i},\varphi_{i}) = \left[1, \exp\left(-\frac{2\pi}{\lambda}\mathbf{k}_{i}\mathbf{l} S_{(1,1)}\right), \cdots, \exp\left(-\frac{2\pi}{\lambda}\mathbf{k}_{i}\mathbf{l}_{S(1,K)}\right), \cdots, \exp\left(-\frac{2\pi}{\lambda}\mathbf{k}_{i}\mathbf{l}_{S(L,1)}\right), \cdots, \exp\left(-\frac{2\pi}{\lambda}\mathbf{k}_{i}\mathbf{l}_{S(L,1)}\right), \cdots, \exp\left(-\frac{2\pi}{\lambda}\mathbf{k}_{i}\mathbf{l}_{(L,K)}\right)\right]^{\mathrm{T}},$$

 $\boldsymbol{a}_{p}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i},\boldsymbol{\gamma}_{i},\boldsymbol{\eta}_{i}) = [p_{0},p_{S(1,i)},\cdots,p_{S(1,i)},p_{S(2,i)},\cdots,p_{S(2,i)},\cdots,p_{S(2,i)},\cdots,p_{S(L,i)}]^{\mathrm{T}}.$

式中: $\tilde{a}(\theta_i, \varphi_i, \gamma_i, \eta_i)$ 为第 i 个信号的导向矢量, $a(\theta_i, \varphi_i)$ 为导向矢量中空域信息, $a_p(\theta_i, \varphi_i, \gamma_i, \eta_i)$ 为导向矢量中的极化信息, k_i 为第 i 个入射信号的 方向矢量, $l_{(l,k)}$ 为第 l 个母线上第 k 个阵元的位置矢 量, p_0 表示顶点处阵元对入射信号源的极化响应, $p_{S(l,i)}$ 表示第 l 条母线的阵元对第 i 个入射信号的极 化响应, $k_i \ l_{(l,K)}$ 和 $p_{S(l,i)}$ 的具体定义和表示方式见 文献[10], "①"为矩阵的 Hadamard 乘积.

由阵列的建模过程可知,阵元受共形阵列曲率 影响,使其具有不同的极化状态,但同一条母线上的 阵元由于在方向图旋转变换过程中具有相同的欧拉 旋转角,因此具有相同的极化状态^[10],对入射信号 的极化响应相同.本文正是利用同母线阵元的同极 化特性实现了极化-DOA 估计的降维算法.

 基于降维 MUSIC 的极化-DOA 联 合估计

2.1 锥面共形阵列的 MUSIC 算法原理

定义单极化阵元共形阵列的协方差矩阵为

$$\boldsymbol{R}_{x} = \mathrm{E}\left\{\boldsymbol{X}(t)\boldsymbol{X}^{\mathrm{H}}(t)\right\},\,$$

对 R_x 进行特征值分解有

$$\boldsymbol{R}_{x} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{H}} = \sum_{i=1}^{N} \lambda_{i}\boldsymbol{u}_{i}\boldsymbol{u}_{i}^{\mathrm{H}}.$$

式中: $U = \{u_1 \ u_2 \ \cdots\}$ 为特征向量矩阵; $\Lambda = diag\{\lambda_1, \lambda_2, \cdots, \lambda_M, \lambda_{M+1} \cdots, \lambda_N\}$ 为特征值矩阵, 且 有 $\lambda_1 \ge \lambda_2, \ge \cdots, \ge \lambda_M > \lambda_{M+1} = \cdots = \lambda_N = \sigma^2$. 根 据子空间原理,可知由特征向量张成的信号子空间 和噪声子空间分别为

 $\langle S \rangle = \operatorname{span} \{ \boldsymbol{U}_s \} = \operatorname{span} \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \cdots \boldsymbol{u}_M \},$

 $\langle N \rangle = \operatorname{span} \{ \boldsymbol{U}_N \} = \operatorname{span} \{ \boldsymbol{u}_{M+1}, \cdots \boldsymbol{u}_N \}.$

进一步由子空间原理可知,信号导向矢量与噪声空间正交,即

 $\tilde{a} (\theta_i, \varphi_i, \gamma_i, \eta_i)^{H} U_N = 0, i = 1, 2, \dots, M.$ (2) 由式(2)可定义极化-DOA 联合谱表达式为

$$\boldsymbol{P}(\theta,\varphi,\gamma,\eta) = \frac{1}{\|\tilde{\boldsymbol{a}}(\theta,\varphi,\gamma,\eta)^{\mathsf{H}}\boldsymbol{U}_{N}\|^{2}}.$$
 (3)

Γ1

对式(3)进行四维搜索,得到 M 个极大值所对 应的参数值即为对信号参数($\theta, \varphi, \gamma, \eta$)的估计. 由于在参数估计过程中需要进行四维搜索,算法的 计算复杂度较高,不利于工程实现.针对此问题,本 文从导向矢量中极化信息和 DOA 信息解耦合的角 度出发,通过秩损原理实现了极化-DOA 参数估计 的降维算法,大大降低了算法的计算复杂度.

2.2 锥面共形阵列的降维 MUSIC 算法原理

由式(1)可知,导向矢量可重写为

$$\tilde{\boldsymbol{a}}(\theta, \varphi, \gamma, \eta) = \boldsymbol{a}_{s}(\theta, \varphi) \odot \boldsymbol{a}_{p}(\theta, \varphi, \gamma, \eta) =$$

$$\begin{bmatrix} \mathbf{I} \\ \exp(-\frac{2\pi}{\lambda}\mathbf{k}\cdot\mathbf{I}_{S(1,1)}) \\ \vdots \\ \exp(-\frac{2\pi}{\lambda}\mathbf{k}\cdot\mathbf{I}_{S(1,K)}) \\ \vdots \\ \exp(-\frac{2\pi}{\lambda}\mathbf{k}\cdot\mathbf{I}_{S(1,L)}) \\ \vdots \\ \exp(-\frac{2\pi}{\lambda}\mathbf{k}\cdot\mathbf{I}_{S(L,1)}) \\ \vdots \\ \exp(-\frac{2\pi}{\lambda}\mathbf{k}\cdot\mathbf{I}_{S(L,K)}) \end{bmatrix} \cdot \begin{bmatrix} p_{0} \\ p_{S(1)} \\ \vdots \\ p_{S(L)} \\ \vdots \\ p_{S(L)} \\ \vdots \\ p_{S(L)} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{a}_{s1}(\theta,\varphi) & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{a}_{s2}(\theta,\varphi) & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{$$

其中

$$a_{L}(\theta,\varphi,\gamma,\eta) = \begin{bmatrix} p_{0} & p_{S(1)} & \cdots & p_{S(L)} \end{bmatrix}^{\mathrm{T}}, \quad (5)$$

$$a_{\Sigma}(\theta,\varphi) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & a_{s1}(\theta,\varphi) & 0 & 0 & 0 \\ 0 & 0 & a_{s2}(\theta,\varphi) & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & a_{sL}(\theta,\varphi) \end{bmatrix}.$$

 $a_{sl}(\theta, \varphi)(l = 1, 2, \dots, L)$ 为第 l条母线阵元空域信息的导向矢量,可表示为

 $\begin{aligned} \boldsymbol{a}_{\boldsymbol{s}}(\boldsymbol{\theta}, \boldsymbol{\varphi}) &= \left[\exp(-\frac{2\pi}{\lambda} \boldsymbol{k} \cdot \boldsymbol{l}_{\boldsymbol{s}(1)}) \cdots \exp(-\frac{2\pi}{\lambda} \boldsymbol{k} \cdot \boldsymbol{l}_{\boldsymbol{s}(\boldsymbol{k})}) \right]^{\mathrm{T}}, \\ & \text{由子空间原理知}, 导向矢量参数与入射信号参数匹$ $配时,有 \end{aligned}$

$$\|\tilde{a} (\theta_{i},\varphi_{i},\gamma_{i},\eta_{i})^{\mathrm{H}}U_{N}\|^{2} = \tilde{a} (\theta_{i},\varphi_{i},\gamma_{i},\eta_{i})^{\mathrm{H}}U_{N}U_{N}^{\mathrm{H}}\tilde{a}(\theta_{i},\varphi_{i},\gamma_{i},\eta_{i}) = 0, i = 1, 2, \cdots, M.$$
(6)

$$\Re_{\mathcal{I}}(4)$$
代人到式(6)中,整理可得

$$\boldsymbol{a}_{L}^{\mathrm{H}}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i},\boldsymbol{\gamma}_{i},\boldsymbol{\eta}_{i}) \times \boldsymbol{a}_{\Sigma}^{\mathrm{H}}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i}) \times \boldsymbol{U}_{N}\boldsymbol{U}_{N}^{\mathrm{H}} \times \boldsymbol{a}_{\Sigma}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i}) \times \boldsymbol{a}_{L}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i},\boldsymbol{\gamma}_{i},\boldsymbol{\eta}_{i}) = 0,$$
$$\boldsymbol{a}_{L}^{\mathrm{H}}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i},\boldsymbol{\gamma}_{i},\boldsymbol{\eta}_{i})\boldsymbol{Q}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i})\boldsymbol{a}_{L}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i},\boldsymbol{\gamma}_{i},\boldsymbol{\eta}_{i}) = 0,$$
$$\boldsymbol{i} = 1,2,\cdots,M, \qquad (7)$$

其中

$$\boldsymbol{Q}(\theta_i, \varphi_i) = a_{\Sigma}^{\mathrm{H}}(\theta_i, \varphi_i) \times \boldsymbol{U}_{N} \boldsymbol{U}_{N}^{\mathrm{H}} \times \boldsymbol{a}_{\Sigma}(\theta_i, \varphi_i).$$
(8)

由式(8)显然有 $Q(\theta_i,\varphi_i) = Q^{H}(\theta_i,\varphi_i)$,此时 式(7)的左端为矩阵 $Q(\theta_i,\varphi_i)$ 的二次型表示.由 式(5)可知, $a_L(\theta_i,\varphi_i,\gamma_i,\eta_i)$ 为各条母线阵元对入 射信号的极化响应,由于各母线间阵元的极化形式 不同,因此在 L条母线中最多只有 1条母线阵元的 极化状态与入射信号极化正交,即 $a_L(\theta_i,\varphi_i,\gamma_i,\eta_i)$ 中元素不全为零, $a_L(\theta_i,\varphi_i,\gamma_i,\eta_i)$ 非零向量, $a_L(\theta_i,\varphi_i,\gamma_i,\eta_i) \neq 0$.

当参数 $(\theta, \varphi, \gamma, \eta) = (\theta_i, \varphi_i, \gamma_i, \eta_i), i = 1, 2,$ …,*M*时,有 $\tilde{a} (\theta_i, \varphi_i, \gamma_i, \eta_i)^{H} U_N = 0$,此时有 $a_L^{H}(\theta, \varphi, \gamma, \eta) Q(\theta_i, \varphi_i) a_L(\theta, \varphi, \gamma, \eta) = 0.$

当参数 $(\theta, \varphi, \gamma, \eta) \neq (\theta_i, \varphi_i, \gamma_i, \eta_i), i = 1, 2,$ …, *M* 时, 有 \tilde{a} $(\theta_i, \varphi_i, \gamma_i, \eta_i)^{H} U_N \neq 0$, 此时有 $a_L^{H}(\theta, \varphi, \gamma, \eta) Q(\theta_i, \varphi_i) a_L(\theta, \varphi, \gamma, \eta) > 0.$

由以上讨论可知, $Q(\theta, \varphi)$ 为半正定矩阵,当且 仅当 $(\theta, \varphi) = (\theta_i, \varphi_i), i = 1, 2, \dots, M$ 时, $Q(\theta, \varphi)$ 为 奇异矩阵. 即 $Q(\theta, \varphi)$ 在信源的真实入射方向 (θ_i, φ_i) 处奇异,此时对矩阵 $Q(\theta, \varphi)$ 有

 $\det[\boldsymbol{Q}(\theta_i,\varphi_i)] = 0, i = 1, 2, \cdots, M.$

需要注意的是,由于共形载体对阵元的遮挡效 应,使得 $a_{s}(\theta_{i},\varphi_{i})$ 的对角线存在部分元素为0的 现象^[10],在这种情况下,即使(θ,φ)与信号的真实 入射方向不对应,也会使矩阵Q奇异.因此需要对 由阵列遮挡效应造成矩阵Q的奇异性进行处理.由 文献[10]中讨论可知,在有遮挡效应的情况下,未 受遮挡阵元对应的导向矢量仍然与噪声空间中相应 的元素正交.因此在按照式(8)构造Q后,将Q中全 为0的行和列去掉得到Q'阵,此时对Q'阵有

 $\det[\mathbf{Q}'(\theta_i,\varphi_i)] = 0, i = 1, 2, \cdots, M.$

根据矩阵行列式与矩阵特征值关系,可得对入 射信源的二维 DOA 估计为

$$(\hat{\theta}, \hat{\varphi}) = \arg \max_{(\theta, \varphi)} \left\{ \frac{1}{\lambda_{\min} \{ \boldsymbol{Q}'(\theta, \varphi) \}} \right\}, \quad (9)$$

式中, λ_{\min} {·}表示矩阵的最小特征值.

由式(9)得到多个入射信号的 DOA 参数估计 值 ($\hat{\theta}, \hat{\varphi}$)后,可将 DOA 估计结果分别代入到式(3) 中,得到

$$\boldsymbol{P}(\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\varphi}}, \boldsymbol{\gamma}, \boldsymbol{\eta}) = \frac{1}{\|\tilde{\boldsymbol{a}}(\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\varphi}}, \boldsymbol{\gamma}, \boldsymbol{\eta})^{\mathrm{H}} \boldsymbol{U}_{N}\|^{2}}.$$
 (10)

• 39 •

对式(10)分别作极化参数的二维估计,可得与 DOA 参数相对应的极化参数估计结果.

降维 MUSIC 算法步骤:

1) 计算阵列协方差矩阵, 并作特征值分解, 得 到噪声子空间 U_N ;

2)根据式(8)构造矩阵 Q,并去掉其中全为零的行和列,得到 Q' 阵;

3)根据式(9)进行角度域的二维搜索,得到 DOA 参数的估计;

4)将 DOA 估计值代入到式(10)中,在极化域 进行二维搜索,得到极化参数估计.

综上,通过对导向矢量中极化信息和 DOA 信息 的剥离,算法实现了参数估计的降维处理,先由式 (9)估计信号的 DOA 参数,然后通过式(10)估计信 号的极化参数.可以看出降维算法将传统 MUSIC 算 法所需的四维参数搜索转化为 2 个二维参数搜索, 大大降低了计算复杂度;同时在参数估计过程中实 现了估计参数的自动配对,避免了 ESPRIT 算法所 需的参数配对问题.

2.3 降维算法计算复杂度分析

在计算复杂度方面,降维 MUSIC 算法与传统 MUSIC 算法的计算量均可分为阵列协方差矩阵计 算、特征值分解和谱函数计算三部分.为方便比较, 假设两种算法对应的导向矢量通过正余弦查表得到, 暂不考虑其计算量;与计算量有关的参数为阵元个数 N、入射的信号源个数M、母线个数L、快拍数P;不 失一般性,假设极化和 DOA 参数的搜索范围为各自 的值域范围,即 θ 为0°~90°, φ 为0°~360°, γ 为 0°~90°, η 为0°~360°, 各参数的搜索步长均为1°. 2.3.1 阵列协方差矩阵计算

两个复数相乘的计算量为 $(4m + 2a)(m 表示 乘法, a 表示加法, 下同), 因此其单快拍自相关矩阵的计算量为 <math>N \times N \times (4m + 2a), \forall P$ 个快拍, 阵列自相关矩阵的计算量为 $P \times N^2 \times (4m + 2a) + P \times N^2 \times 2a$. 两种算法均是对 N 个阵元的协方差矩阵进行计算, 因此本部分的计算量二者相同.

2.3.2 特征值分解

在特征子空间计算过程中,两种算法均需要对 N维阵列协方差矩阵 R_{xx} 进行特征值分解,因此在本 部分二者的计算量相同.由文献 [14] 知,采用 Lanczos 算法计算 N 维矩阵的特征子空间分解时,其 计算量主要为 N³ 次的复数乘法,即文中阵列协方差 矩阵特征分解的计算量为 N³ × (4m + 2a).

2.3.3 谱函数计算

谱函数部分的计算量由需要计算的谱函数点数 和每点所需的计算量确定. 传统 MUSIC:算法需要完成 1 次四维参数搜索, 所需计算的谱函数点数为 90 × 360 × 90 × 360,每个 函数点涉及的计算为导向矢量与噪声子空间相乘得 到的行向量 a_u 以及计算 a_u 的模. 计算 a_u 所需的计 算量为 [N × (4m + 2a) + N × 2a] × (N - M), 计 算向量 a_u 的模需要的计算量为 (N - M) × (4m + 2a) + (N - M) × 2a,整理后得传统 MUSIC 所需计 算量为 90 × 360 × 90 × 360 × [(N - M) × (N + 1) × (4m + 4a)].

降维 MUSIC:算法需要完成 1 次二维 DOA 搜索,以及 M 次二维极化参数搜索.

1) DOA 搜索所需的谱函数点数为 90×360,每 个函数点需要的计算为:矩阵 Q 的构造以及矩阵 Q的特征值分解,其中计算矩阵 Q 所需的计算量为 $(L+1) \times (N-M) \times N \times (4m+4a) + (L+1)^3 \times$ (4m+2a),矩阵 Q 的特征值分解所需的计算量为 $(L+1)^3 \times (4m+2a).整理后可得降维算法计算二$ 维 DOA 搜索需要的计算量为

 $90 \times 360 \times \{ [(L + 1) \times (N - M) \times N + (L + 1)^3] \times (4m + 4a) + (L + 1)^3 \times (4m + 2a) \}.$

2)极化参数搜索需要进行 M 次二维极化参数 计算,需要计算的谱函数点数为 $M \times 90 \times 360$,每个 谱函数点所需的计算量与传统 MUSIC 相同,为 [$(N - M) \times (N + 1) \times (4m + 4a)$],因此可得极化 参数搜索需要的计算量为 $M \times 90 \times 360 \times [(N - M) \times (N + 1) \times (4m + 4a)]$.

整理可得降维 MUSIC 算法所需的计算量为 90 × 360 × {[(L + 1) × (N - M) × N + (L + 1)³] × (4m + 4a) + (L + 1)³ × (4m + 2a) } +

 $M \times 90 \times 360 \times [(N - M) \times (N + 1) \times$

(4m + 4a)].

由于目前的数字信号处理芯片一般具有独立的加法和乘法运算单元,可认为乘法和加法占用的指 令周期相同.若取阵元个数 N = 25,入射的信号源个 数 M = 2,母线个数 L = 6,快拍数 P = 500,传统 MUSIC 算法和降维 MUSIC 算法所需的计算量对比 如表 1 所示.

表1 传统 MUSIC 算法和降维 MUSIC 算法计算量比较(乘加次数)

Tab.1 Compute complexity comparison between MUSIC and dimension reduced MUSIC(multiplicatio times)

算法	阵列协方差矩阵	特征值分解	多维参数搜索
传统 MUSIC 算法	2.5×10^{6}	9.375×10 ⁴	4.635 7×10 ¹²
降维 MUSIC 算法	2.5×10^{6}	9.375×10 ⁴	1.485 0×10 ⁹

由表1可以看出,传统算法与降维算法在阵列协 方差矩阵计算和特征值分解部分的计算量相同,在多 维参数搜索过程中,由于降维算法将四维的遍历搜索 过程改进为二维 DOA 与二维极化参数的搜索计算,因此降低了极化-DOA 估计算法的计算量,二种算法 在参数搜索部分的计算量之比约为3 121:1.

3 仿真实验

本节通过 Matlab 仿真研究降维 MUSIC 算法的有 效性以及参数估计精度. 仿真中所取锥面共形阵列形 式如图 1 所示,具体参数为: β = 20°,圆锥顶点处布有 一个阵元,其下共有 4 个圆环阵,每个圆环阵有 6 个阵 元,均匀分布在圆环上,圆环阵之间距离为 2.75λ.

3.1 降维 MUSIC 算法有效性验证

仿真条件:信噪比 20 dB,快拍数 500,取极化和 DOA 参数均不同的两个信源,参数分别为 $(\theta_1, \varphi_1, \gamma_1, \eta_1) = (25^\circ, 200^\circ, 45^\circ, 90^\circ), (\theta_2, \varphi_2, \gamma_2, \eta_2) = (35^\circ, 50^\circ, 45^\circ, 0^\circ), 降维 MUSIC 算法所得仿真结$ 果如图 2 所示.

由图 2(a)可以看出,虽然两个入射信源的极化 参数不同,但降维 MUSIC 算法通过在二维 DOA 域 的搜索实现了对 2 个信源 DOA 参数的估计,避免了 传统 MUSIC 算法所需的四维搜索,大大降低了参数 估计算法的计算复杂度.由图 2(b)、(c)可以看出, 在得到信源 DOA 参数估计结果后,将其分别代入到 式(10)给出的极化参数谱估计表达式中,即可分别 得到与 DOA 参数相匹配的极化参数估计结果.图 2 所示的仿真结果证明了降维 MUSIC 算法实现极化-DOA 参数估计的有效性.

3.2 降维 MUSIC 算法参数估计精度仿真

仿真条件:阵列接收快拍数 500,单信源入射, 参数为 (θ_1 , φ_1 , γ_1 , η_1) = (15°, 200°, 45°, 100°), 信噪比从 0 dB 变化到 20 dB,蒙特卡洛实验次数 500,统计算法参数估计的均方根误差,仿真结果如 图 3 所示.

由图 3 所示的仿真结果可以看出,本文方法对 DOA 参数和极化参数的估计精度略逊于 MUSIC 算 法,在信噪比低于 10 dB 时,两种算法的参数估计精 度相差较大.随着信噪比的逐渐增加,本文方法与 MUSIC 算法的估计精度差逐渐变小.

综合仿真实验 1 和 2 的结果,以及 2.3 节计算量的讨论可以看出,降维算法在牺牲部分精度的前提下,有效降低了极化-DOA 联合估计算法的计算量. MUSIC 算法四维空间搜索所需计算量巨大,不利于工程实现;若在实际工程应用中,允许对锥面共形阵列构造同极化接收子阵,则降维算法可有效降低计算复杂度,有利于工程的实现.

4 结 论

在建立单极化阵元锥面共形阵列信号模型的基础上,通过构造同极化接收子阵,完成了空域信息和极化域信息的去耦合,根据积损原理实现了极化-DOA估计的降维 MUSIC 算法,并通过仿真实验研究了降维算法的估计精度.仿真结果表明,本文方法可以有效实现极化-DOA 参数的降维估计,大大降低了联合估计算法的计算量,为共形阵列在工程上的应用提供了一个可选择的方案.同时,也可以看到本文方法在参数估计精度的仿真结果逊色于MUSIC 算法,另外降维 MUSIC 算法参数估计精度的理论分析也尚未进行,相信随着更多同行的研究,以上问题将最终得到解决.

参考文献

- [1] HUANG Q, ZHOU H, BAO J, et al. Accurate calibration of mutual coupling for conformal antenna arrays[J]. Electronics Letters, 2013, 49(23): 1418-1420.
- [2] RASEKH M, SEYDNEJAD S R. Design of an adaptive wideband beamforming algorithm for conformal arrays [J]. IEEE Communications Letters, 2014, 18(11):1955-1958.
- [3] HUANG Zhijiang, ZHOU Jie, ZHANG Haiping. Full polarimetric sum and difference patterns synthesis for conformal array[J]. Electronics Letters, 2015, 51(8):602-604.
- [4] LI Yongjiu, LI Long. Broadband microstrip beam deflector based on dual-resonance conformal loops array[J]. IEEE Transactions on Antennas and Propagation, 2014,62(6): 3028-3034.
- [5] XU Kuiwen, YE Dexin, ZHU Zhongbo, et al. Analytical beam forming for circularly symmetric conformal apertures [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1458-1464.
- [6] QI Z S, GUO Y, WANG B H. Blind direction of arrival estimation angorithm for conformal array antenna with respect to polarization diversity[J]. IET Microwaves, Antennas & Propagation, 2011, 5 (4),433-442.

[7] 张树银, 郭英, 齐子森,等. 基于子空间原理的共形阵列多参数
 联合估计算法[J]. 系统工程与电子技术, 2012, 34(6): 1146-1152.
 ZHANG Shuyin, GUO Ying, QI Zisen, et al. Subspace-based mul-

tiple parameter estimation algorithm for incident signals with conformal array [J]. Systems Engineering and Electronic, 2012, 34(6): 1146–1152.

- [8]司伟建,万良田,刘鲁涛,等. 共形阵列天线超宽频带波达方向 实时估计[J]. 哈尔滨工程大学学报, 2014, 35(7): 913-918.
 SI Weijian, WAN Liangtian, LIU Lutao, et al. Real-time ultrawideband direction finding for the conformal array antenna [J]. Journal of Harbin Engineering University, 2014, 35(7): 913-918.
- [9] 张学敬,杨志伟,廖桂生.共形阵列幅相误差校正快速算法[J]. 电子与信息学报,2014,36(5):1100-1105.
 ZHANG Xuejing, YANG Zhiwei, LIAO Guisheng. A fast method for gain-phase error calibration in conformal array [J]. Journal of Electronics & Information Technology, 2014,36(5):1100-1105.
- [10]刘帅,周洪娟,金铭,等. 锥面共形阵列天线的极化-DOA 估计
 [J]. 系统工程与电子技术,2012,33(2):253-257.
 LIU S, ZHOU H J, JIN M, et al. Polarization-DOA estimation for conical conformal array antennas[J]. Systems Engineering and Electronics, 2012,33(2):253-257.
- [11] ZOU L, LASENBY J, HE Z. Direction and polarisation estimation using polarised cylindrical conformal arrays [J]. IET Signal Processing, 2012, 6(5):395-403.
- [12] YANG Kai, ZHAO Zhiqin, YANG Wei, et al. Direction of arrival estimation on cylindrical conformal array using RARE [J]. Journal of Systems Engineering and Electronics, 2011, 22(5):767-772.
- [13]齐子森,郭英,王布宏,等. 共形阵列天线 MUSIC 算法性能分析
 [J].电子与信息学报,2008,30(11):2674-2677.
 QI Zisen, GUO Ying, WANG Buhong, et al. Performance analysis of MUSIC for conformal array [J]. Journal of Electronics & Information Technology, 2008,30(11):2674-2677.
- [14] XU G, KAILATH T. A Fast Algorithm for Signal Subspace Decomposition and Its Performance Analysis [C]//International Conference on Acoustics, Speech, and Signal Processing. Toronto: IEEE, 1991: 3069-3072.

(编辑 王小唯, 苗秀芝)