DOI:10.11918/j.issn.0367-6234.201805008

大型冷却塔自振频率估算方法及拟合优度分析

徐 璐.柯世堂

(南京航空航天大学 土木工程系,南京 210016)

摘 要:自振频率是评估结构动态变形和受力性能的关键因素,现有冷却塔结构自振频率主要基于有限元分析手段,缺乏简 单有效的冷却塔自振频率估算公式.为解决该问题,以国内某179 m高的大型冷却塔为基准塔,首先通过改变结构典型参数获 得基准塔的38个模型并进行动力特性分析,同时提炼出基频频率随结构参数的变化规律;然后采用拉丁超立方抽样法进行结 构自振频率参数的敏感性分析,获取了不同阶数下各参数的敏感因子.在此基础上,创新性地拟合提出考虑敏感因子权重值 的多参数的基频实用估算公式.最后,选择国内8座典型塔高和塔型的冷却塔进行现场测试,采用不同模态识别方法获得冷却 塔前10阶自振频率,进行了实测冷却塔结构参数的拟合优度分析.研究表明:自振频率对冷却塔高度最为敏感,其敏感因子显 著大于其它参数的敏感因子;实测塔计算结果验证了基频实用估算公式的有效性,基频拟合优度最大值为0.996,其中各目标塔 拟合优度的均值和均方差分别为0.948和0.047.误差分析表明本文提出的自振频率估算公式精度高、稳定性好.

关键词:冷却塔;自振频率;敏感性分析;现场实测;模态识别;估算公式 中图分类号:TU279.7+41 文献标志码:A 文章编号:0367-6234(2018)12-0193-06

Estimation method and goodness of fit analysison natural frequencies of large cooling towers

XU Lu, KE Shitang

(Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: The natural frequency is the key factor that determines the dynamic deformation and stress of structure. The natural frequencies of the existing cooling towers are mainly obtained by finite element analysis, and there is no simple and effective formula for estimating the natural frequencies of the cooling towers. To resolve this problem, a large cooling tower was taken as the reference tower. Firstly, 38 models were obtained by changing the typical parameters of the reference tower, and the dynamic characteristics were analyzed. The law of fundamental frequency changing with the structure parameters was also extracted. Then, the sensitivity of the structural natural frequency parameters was analyzed by Latin hypercube sampling method, and the sensitive factors of various structural parameters under different orders were obtained. On this basis, the practical estimation formula of multi-parameter fundamental frequency considering sensitivity factor weight was innovatively fitted. Finally, eight cooling towersof typical height and typein China were selected for the field measurements, and the first 10-order self-oscillation frequencies of cooling tower were obtained by different mode identification methods. Further, the goodness of fit was analyzed using eight seat structure parameters of cooling tower. The results show that the natural frequencies are most sensitive to the height of cooling towers, and the sensitive factors are significantly higher than those of other parameters. By using 8 measured towers, the formula for estimating fundamental frequency isverified. The maximum value of self-vibration frequency fitting is 0.996, in which the mean value and mean variance of each target tower are 0.948 and 0.047, respectively. The estimation formula of the natural frequencies is of high accuracy and stability.

Keywords: cooling tower; natural vibration frequency; sensitivity analysis; field measurement; modal identification; estimation formula

冷却塔复杂的结构外观和内部构造的特殊性导 致其动力特性复杂^[1-3],自振频率是衡量动力特性的 关键参数,目前主要通过有限元计算或现场实测来获 取,计算过程复杂、耗时长且方法单一,缺乏简单有效

- 基金项目:国家自然科学基金(51878351,51208254); 江苏省优秀青年基金(BK20160083)
- **作者简介:**徐 璐(1991—),女,硕士研究生
- 通信作者: 柯世堂, keshitang@163. com

的冷却塔自振频率估算公式.目前已有研究成果^[4-5] 和规范^[6]中鲜有提出自振频率的估算公式,也并未涉 及自振频率参数的敏感性分析,难以通过快速估算结 构自振频率的方法来评估结构参数对动态响应的影 响程度.因此探究不同参数下动力特性的敏感性,通 过附加敏感因子权重值拟合出自振频率的估算公式, 并基于现场实测模态识别结果进行自振频率估算公 式的精细化验证具有重要的理论和工程意义.

针对大型冷却塔动力特性的研究,文献[7]基

收稿日期: 2018-05-04

于现场实测数据对冷却塔动力特性进行分析:文献 [8]发现冷却塔低阶频率主要受环向刚度控制,子 午线型与结构整体抗倾覆弯矩有关:文献[9]通过 建立与渡桥电厂冷却塔相同壁厚、高度、筒底直径和 人字柱等参数的冷却塔,分析两者动力特性和风致 响应的差异,结果表明塔型不合理是渡桥电厂冷却 塔倒塌的重要原因之一;文献[10-11]对3种不同 特征尺寸的冷却塔进行了动力特性分析,研究发现 基频较低的冷却塔共振响应占据主导地位,随基频 的降低风振响应的动力放大作用愈加显著.此外,针 对结构动力特性的敏感性分析,主要集中在大跨度 桥梁和屋盖,文献[12]提出了基于高斯过程模型的 全局灵敏度分析方法,在此基础上分析了实桥动力 特性不确定性的灵敏度;文献[13]针对某大跨屋盖 采用扰动法和拉丁超立方抽样法进行多参数下结构 自振频率的敏感性分析,结果表明两种方法分析的 6种设计参数对结构自振频率的影响规律一致.

鉴于此,以国内某179 m高的大型冷却塔为基 准塔,首先通过改变模型典型结构参数获得基准塔 38 个模型的动力特性,同时提炼出基频随结构参数 的变化规律.然后,采用扰动法和拉丁超立方抽样两 种方法进行结构自振频率参数的敏感性分析,获取 了不同阶数下各结构参数的敏感因子.在此基础上, 首次拟合出考虑敏感因子权重值的多参数基频的实 用估算公式.最后,选取国内8座典型塔高和塔型的 冷却塔进行现场测试和模态识别,利用8座冷却塔 结构参数进行拟合优度分析.通过误差分析验证本 文提出的自振频率估算公式精度高、稳定性好.

1 基准塔建模及动力特性分析

1.1 有限元建模

· 194 ·

基准塔塔高179 m, 喉部直径为98.6 m, 进风口 高度为27.8m. 采用大型通用软件 ANSYS 建立基准 塔模型, 整体和局部模型如图1所示.其中塔筒采用 Shell63 单元, 环向和子午向分别划分192和118个 单元; 环基及与环基连接的48对X型柱均采用 Beam188单元; X型支柱与塔筒下部连接采用节点 自由度耦合的方式, 每个环基下部采用 Combin14 单 元, 每根桩基均采用3个力弹簧单元和3个力矩弹 簧单元分别模拟桩沿竖向、环向、径向、绕竖向、绕环 向和绕径向的作用, 弹簧单元一端与环基刚性连接, 另一端固结约束.

1.2 自振特性分析

采用 Block Lanczos 方法求解基准塔的自振频 率和振型,表1和图2分别给出了冷却塔前10阶自 振频率分布曲线和典型振型列表.该基准塔的基频 为 0.678 Hz,前 10 阶频率均小于 1.0 Hz;结构振型 复杂且具有明显的三维特征,具体表现为:子午向均 存在至少 2 个谐波,随阶数增加底部谐波所处高度 逐渐降低,且环向谐波数随阶数增加而增大.

表1 冷却塔前10阶固有频率和振型列表

Tab. 1 The first 10orders natural frequencies and vibration modes of cooling towers

2 自振频率的参数分析

为研究塔高、喉部高度、喉部直径、进风口高度 和支柱截面对冷却塔自振特性的敏感性,以基准塔 为例,在保持其它参数不变并控制单一变量的前提 下,对各个模型进行动力特性分析,参数分析如下:

1) 塔高:在现有设计高度范围内等间距取 8 个数据进行分析,各种高度下喉部始终位于总高度的 0.75 倍处;

2) 喉高比: 在喉高比 0.75~0.80 范围内, 每隔 0.01 取一个数据进行计算;

3)喉部直径:在保证其它参数不变的基础上, 将喉部直径等量增加0.05 m;

4)进风口高度:以10m的进风口高度为基准, 每隔2m进行等间距取值;

5) 支柱截面积:在1.0~2.6 m² 的支柱截面积 范围内等间距取值进行分析.

图3给出不同高度、喉高比、喉部直径、进风口高

度和支柱截面积下冷却塔的基频结果,在此基础上拟 合出基频随各参数变化的分布曲线.由图3可知:

 1)基频随冷却塔高度增加逐渐减小,最大减幅为55%,说明塔高与自振频率呈负相关关系且相关 性较强;

2)随喉高比的增大结构基频大致呈下降趋势, 喉高比与结构自振频率呈负相关,在 0.76~0.79 范 围内出现了平缓区;

3)随喉部直径的增加基频逐渐增大,喉部直径 与结构自振频率呈正相关;

4)进风口高度的增加使得结构基频呈非线性 增加的趋势,最大增幅仅为6%,进风口高度与基频 呈正相关;

5)支柱截面积与结构自振频率呈对数律分布, 当截面积增大至一定数值(2 m²),结构基频增长趋 势变缓,最大增幅为9.8%,与塔高相比,自振频率 与支柱截面积相关性较弱.

Fig. 3 Relationcurve foreach parameter of cooling tower and the natural frequency of vibration

3 自振频率参数的敏感性分析

3.1 拉丁超立方抽样法

扰动法需假定其它参数为定值,其结果会随着 基准状态的不同而改变.拉丁超立方抽样^[13](latin hypercube sampling, LHS)方法是一种高效高精的均 匀抽样方法,LHS 方法步骤为:1)将每个变量 x_i 分为 等概率的 K 个区间,每个区间的概率为 1/K,取每个 区间的中点作为此变量的一个样本代表 x_i^k(图 4); 2)从每个变量 x_i 提取一个样本代表 x_i^k 按照随机编 号排列,对所有变量的样本 x_i 都按照随机编号进行 排列,从而形成 N 个随机排列,每个排列均包含全 部变量的一个样本代表 x_i^k . 在计算中取 K = 4N/3 就能满足精度要求. 本文随机变量数 N = 5,故取 $K = 4N/3 \approx 6$,相应的随机编号见表 2.

图4 各参数变量的等概率区间划分

Fig. 4 Equal probability interval division

表 2 随机编号抽样表

Tab. 2 Sample table for random numbers

运算	Н	В	<i>R</i> (喉部	J(进风	A(支柱
次数	(塔高)	(喉高)	半径)	口高)	面积)
1	2	1	3	6	4
2	6	3	2	5	1
3	3	6	4	1	5
4	1	4	5	2	6
5	4	5	1	3	2
6	5	2	6	4	3

自振频率的计算参数 x₁、x₂…及频率的相关矩 阵为

$$C = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} & r_{1y} \\ r_{21} & r_{22} & \cdots & r_{2k} & r_{2y} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ r_{k1} & \cdots & \cdots & r_{kk} & r_{ky} \\ r_{y1} & r_{y2} & \cdots & r_{yk} & r_{yy} \end{bmatrix},$$
(1)

式中:C 为各计算参数 x_1, x_2 …及因变量 f 的相关矩 阵, r_i 为简单相关系数. 对式(1) 求逆矩阵得

$$\boldsymbol{C}^{-1} = \begin{bmatrix} \boldsymbol{c}_{11} & \boldsymbol{c}_{12} & \cdots & \boldsymbol{c}_{1k} & \boldsymbol{c}_{1y} \\ \cdots & \cdots & \cdots & \boldsymbol{c}_{2k} & \boldsymbol{c}_{2y} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \boldsymbol{c}_{k1} & \cdots & \cdots & \boldsymbol{c}_{kk} & \boldsymbol{c}_{ky} \\ \boldsymbol{c}_{y1} & \boldsymbol{c}_{y2} & \cdots & \boldsymbol{c}_{yk} & \boldsymbol{c}_{yy} \end{bmatrix}, \qquad (2)$$

则偏相关系数为

$$P_{x_{i},y} = -\frac{c_{iy}}{\sqrt{c_{ii}c_{yy}}} .$$
(3)

图 5 为通过 LHS 求得的各设计参数的敏感因 子:1) 塔高和喉部高度与结构自振频率呈负相关, 喉部直径、进风口高度和支柱截面积与自振频率呈 正相关;2)冷却塔高度对结构自振频率的敏感性较 大,敏感因子均在 -1.5 ~ -2.0,喉部高度、喉部直 径和支柱截面积的敏感因子均较小,在 ±0.0 上下 波动;3)各设计参数对结构自振频率的敏感度按从 大到小的排列顺序: |*H*| > |*B*| > |*A*| > |*R*| > |*J*|.

图 5 各设计参数的相对灵敏度

3.2 自振频率的实用估算公式

上节分析表明:基频与塔高呈反比,与支柱截面 积呈对数律形式增长,与喉部直径呈指数律形式增 长,而与喉高比和进风口高度呈非线性关系.为便于 工程应用与实现,选取敏感性较大的结构参数(塔 高、喉高和支柱截面积)为目标函数进行多项式拟 合,拟合给出超大型冷却塔基频实用估算方式为

$$F_{f} = \beta_{1} \frac{25.43}{H - 47.80} + \beta_{2} \times 42.14 e^{-(\frac{B - 0.76H}{1.13H})^{2}} + \beta_{3} \frac{7.51A - 3.60}{A - 0.38},$$
(4)

式中 $\beta_1 = \frac{|H|}{|H| + |B| + |A|}$, $\beta_2 = \frac{|B|}{|H| + |B| + |A|}$ 和

 $\beta_3 = \frac{|A|}{|H| + |B| + |A|}$ 分别代表塔高、喉高和支柱截 面积敏感因子的权重值.具体拟合公式的误差率分析 将基于现场实测获取的8座冷却塔数据进行验证.

由敏感性分析可知:塔高对结构自振频率的影响 远大于其它参数,为便于计算将估算公式进行简化:

$$F_f = \frac{25.43}{H - 47.80}.$$
 (5)

4 现场实测及结果分析

4.1 测试冷却塔概况及测点布置

综合考虑冷却塔高度、塔型、建设年限及所处地 域等因素,选择国内8座典型塔高和塔型的冷却塔进 行现场实测,图6给出了现场实测8座冷却塔具体地 理位置信息,图7给出了冷却塔测试现场传感器的安 装示意图,表3出了8座冷却塔详细结构参数列表.

4.2 模态参数识别及有限元对比分析

4.2.1 模态识别结果

图 8 分别给出了基于 ARAM^[14]、ITD^[15]和 STD^[16]

图 6 冷却塔分布示意

Fig. 6 Location distribution of the cooling towers 3种方法识别得到的冷却塔前10阶频率分布曲线.由 图 8 可知,采用不同模态识别方法获得的前 10 阶频 率结果基本一致,识别得到的基频最大相差0.12 Hz,

自振频率最大差值为0.15 Hz,且多种识别方法可有 效填补单一方法产生的模态丢失问题.

图 7 冷却塔模态测试测点布置示意

Fig. 7 Arrangement of measuring points

表 3 8 座测试塔主要参数列表	
------------------	--

Tab. 3 Main parameters of the 8 measured cooling towers

Fig. 8 The first 10 orders curve of modal identification results of cooling tower based on three methods

4.2.2 实测与有限元结果对比

图9给出了测试塔前10阶实测结果与有限元 结果对比曲线.有限元计算的频率与现场实测识别 得到的频率结果相近,基频最大相差4.4%,前10 阶频率最大相差8.2%;测试冷却塔基频分布范围均 在 0.6~1.9 Hz, 不同塔高和塔型冷却塔动力特性存 在差异,塔A和塔B高度明显较其余六塔低,二者频 率分布与其余塔存在较大的差异,基频大于1.0 Hz.

5 拟合优度分析

图 10 给出了 8 座冷却塔基频的实测值与估算 值的对比结果.由图 10 可知:1) 塔 A 至 H 结构基频 逐渐减小,其拟合优度逐渐增大;2)除塔 A 外其余7 座冷却塔拟合优度均在0.9以上,实用拟合公式能

很好地估算结构基频,可信度较高. 表4 冷却塔多参数相关性分析

Tab. 4 Multi-parameter correlation analysis

高度/m	f_1/Hz	f_2/Hz	误差/%
80.0	1.87	1.95	4.28
126.7	1.31	1.26	3.82
150.0	0.83	0.86	3.61
179.0	0.68	0.70	2.94
180.0	0.83	0.81	2.41
180.0	0.68	0.70	2.94
182.0	0.77	0.75	2.60
190.0	0.84	0.82	2.38

为检验估算式(4)中多个参数的关联性,以8 座冷却塔为目标,其中f1 和f2 分别表示为结构基频 有限元计算和拟合公式估算结果,见表4.基频最大 误差为4.28%,最小误差为2.38%,结果表明拟合 公式在参数关联情况下仍具有较高的适用性.

图 9 冷却塔前10阶实测结果与有限元结果对比曲线

Fig. 9 Contrast curve of the measured results of the first 10 ordersand the finite element results for cooling towers

图 10 估算基频与识别结果对比

Comparison between the estimated and the identified Fig. 10 fundamental frequency

6 结 论

1)冷却塔基频随总高度和喉部高度的增加逐 渐减小,而随喉部直径、进风口高度和支柱截面积的 增加逐渐增大;以塔高为目标计算所得的敏感因子 显著大于其它4个参数下的敏感因子,基于精度较 高的拉丁超立方抽样法获取的敏感因子大小排序 为:|H| > |B| > |A| > |R| > |J|.

2)冷却塔自振频率与塔高呈线性反比,与支柱 截面积呈对数律形式增长,与喉部直径呈指数律形 式增长,而与喉高比和进风口高度呈非线性关系.

3)有限元计算的频率与现场实测识别结果相 近,基频最大相差4.4%,测试塔基频分布范围均在 0.6~1.9 Hz;不同塔高和塔型的冷却塔动力特性存 在明显差异,高度较高的塔 A 和 B 自振频率显著大 于其余6塔.

4) 基于多项式拟合原理, 提出考虑敏感因子权重 值的多参数基频的实用估算公式,采用8座实测塔计 算结果验证了基频实用估算公式的有效性,基频拟合 优度最大值为0.996.其中各目标塔拟合优度的均值 和均方差分别为 0.948 和 0.047,本文提出的实用拟 合公式能很好地估算结构自振频率,可信度较高.

参考文献

- [1] REN W X, PENG X L, LIN Y Q. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge[J]. Engineering Structures, 2005, 27(4):535
 [2] KE S T, XU L, GE Y J. Sensitivity analysis and estimation method
- in a strain of the second strain and strain and the strain of the second strain and the strain and s
- [3] WANG Wensheng, XU Shengli, CHENG Gengdong. Optimization of structural dynamic characteristics based on the reduced model
- [J]. Engineering Mechanics, 2011, 28(12): 45
 [4] 沈国辉, 王宁博, 孙炳楠,等. 大型双曲冷却塔的自振特性
 [J]. 重庆大学学报, 2012, 35(2):47 SHEN Guohui, WANG Ningbo, SUN Bingnan, et al. Natural vibration characteristic of large hyperbolic cooling tower[J]. Journal of Chongqing University, 2012, 35(2):47
- 鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风 致响应[J]. 浙江大学学报(工学版), 2010, 44(5):955 BAO Kanyuan, SHEN Guohui, SUN Bingnan. Numerical [5] simulation of fluctuating wind load and wind-induced response of large hyperbolic cooling tower[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(5):955 [6] 建筑结构荷载规范:GB 50009—2012 [S]. 北京:中国建筑工
- 业出版社,2012
- [7] DAI K, BOYAJIAN D, LIU W, et al. Laser-based field measurement for a bridge finite element model validation [J]. Journal of Performance of Constructed Facilities, 2014, 28(5): 554
- 张军锋, 葛耀君, 赵林. 双曲冷却塔结构特性新认识[J]. 工程 [8] 力学,2013,30(6):67. ZHANG Junfeng, GE Yaojun, ZHAO Lin. New perceptions on the structure behavior of hyperboloidal cooling towers J. Engineering
- Mechanics, 2013, 30(6):67 沈国辉, 王宁博, 楼文娟,等. 渡桥电厂冷却塔倒塌的塔型因素 分析[J]. 工程力学, 2012, 29(8):123 SHEN Guohui, WANG Ningbo, LOU Wenjuan, et al. Analysis of [9] tower shape factor in the collapse of the Ferrybridge cooling towers
- [J]. Engineering Mechanics, 2012, 29(8);123 [10] 柯世堂, 侯宪安, 姚友成,等. 强风作用下大型双曲冷却塔风致振 动参数分析[J]. 湖南大学学报(自然科学版), 2013, 40(10): 32
- [11] TSUJIMORI A, KATO M, UCHIDA M. Dynamic Characteristics of the Capillary Pumped Loop for Cooling the Tower-Type Computer ASME 2007 Inter PACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. New York: American Society of Mechanical Engineers, 2007.663
- [12]万华平,任伟新,颜王吉.桥梁结构动力特性不确定性的全局 灵敏度分析的解析方法[J].振动工程学报,2016,29(3):429 WAN Huaping, REN Weixin, YAN Wangji. Analytical global sensitivity analysis for uncertainty in structural dynamic properties of bridges [J]. Journal of Vibration Engineering, 2016, 29(3):429
- [13]甘高凡,傅继阳,饶瑞.设计参数对大跨屋盖结构自振频率的敏感度分析[J].广州大学学报(自然科学版),2011,10(6).73
- [14]余玮,柯世堂.大型冷却塔风致响应极值现场实测和有限元对 比[J].哈尔滨工业大学学报,2018,50(6):23
- YU Wei, KE Shitang. A comparative study between field measurement and finite element analysis of wind response extreme of large cooling tower[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 23 [15]杨佑发,李帅,李海龙.环境激励下结构模态参数识别的改进
- TID 法[J]. 振动与冲击, 2014, 33(1): 194 YANG Youfa, LI Shuai, LI Hailong. Improved ITD method for structural modal parameter identification under ambient excitation J]. Journal of Vibration and Shock, 2014, 33(1): 194
- [16] 郇滢,兰惠清,林楠,等. 基于小波变换的 GM(1,1)-ARMA 组合预测 模型对悬索管桥的应变预测[J].应用科学学报,2016,34(1):95 HUAN Ying, LAN Huiqing, LIN Nan, et al. Prediction of suspension pipeline strain by GM(1,1)-ARMA modal based on wavelet transform[J]. Journal of Applied Sciences-Electronics and Information Engineering, 2016, 34(1): 95

(编辑 赵丽莹)