动态子结构法在凸起地形地震动响应中的应用

李英民^{1,2},王肖巍¹,宋维举¹

(1. 重庆大学 土木工程学院, 重庆 400045; 2. 山地城镇建设与新技术教育部重点实验室(重庆大学), 重庆 400045)

摘 要:为研究山地地形对地震动放大效应的影响,满足实际工程中山地建筑地震动设计的需要,以单峰凸起地形为例,引入 动态子结构法,计算地形坡角在 30~60°,凸起高度 20~80 m 和平台段宽度 50~600 m 共 60 个不同尺寸岩质凸起地形在地震 动输入下的响应,得到不同尺寸凸起地形下模型各点加速度和频谱特性变化规律.结果表明:与传统有限元分析方法相比,动 态子结构法在保证计算精度的同时,能很大程度提高计算效率;凸起地形对地震动放大效应影响较大,坡脚到坡顶地震动响 应不断增大,坡顶平台中点放大效应最为明显;随地形坡角和坡高增加,地形对地震动的放大效应呈增大趋势;坡角和坡高一 定时,随地形宽度增加,地形凸起高度较小时,地震放大效应呈增大趋势,反之凸起高度较大时,地震放大效应呈降低趋势;地 形凸起尺寸的增加会激发高频段反应的加剧,同时降低低频段反应峰值.

关键词:动态子结构法;凸起地形;平台宽度;地震动特性;反应谱谱比

中图分类号: TU375 文献标志码: A 文章编号: 0367 - 6234(2019)06 - 0156 - 06

Application of dynamic substructure method to protruding topography on characteristics of ground motion

LI Yingmin^{1,2}, WANG Xiaowei¹, SONG Weiju¹

(1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Lab of New Technology for Construction of Cities in Mountainous Area (Chongqing University), Ministry of Education, Chongqing 400045, China)

Abstract: To study the effect of mountain topography on seismic amplification and meet the seismic design needs of mountain building in practical engineering, taking unimodal protruding topography as an example, dynamic substructure method was introduced to calculate the seismic response of 60 different-size rock bump terrains with slope angle of $30 \sim 60^{\circ}$, bump height of $20 \sim 80$ m, and platform width $50 \sim 600$ m under the ground motion input, and the seismic response law of amplification of different-size rock bump terrains was obtained. Results show that the dynamic substructure method can greatly improve the computation efficiency while ensuring the computation accuracy. The convex topography has a great influence on the amplification effect of ground motion. The response of the platform is the largest. With the increase of slope to slope top, and the amplification effect of topography on ground motion increases. When the slope angle and slope height remain unchanged and the topographic relief height is relatively small, as the topographic width increases, the seismic amplification effect increases; otherwise, when the bump height is larger, the seismic amplification effect decreases. The increase of topographic relief size leads to the intensification of high frequency response and the decrease of low frequency response peak.

Keywords: dynamic substructure method; protruding topography; platform width; characteristics of ground motion; spectral ratio

大量实际震害表明,坡地、凸起地形、凹地等复杂地形均会对地震动产生不利影响,不同复杂地形的地震动研究越来越受到关注^[1],目前众多学者对 其作了大量研究.文献[2-3]对凸起地形地震动谱 特性的影响作了研究,给出受地形影响的地面运动 的位移傅里叶谱比规律和台地地形对地震地面运动 特征周期的影响规律;文献[4-5]对局部复杂不规 则地形地震动特性作了研究,发现复杂地形地震动 放大效应要大于单一地形;文献[6-7]对不同尺寸 边坡地形水平和竖向地震动反应谱特性作了研究, 并给出岩质坡地斜坡段设计水平地震动放大系数; 文献[8]研究了弹性层状半空间凸起地形 SH 波入 射下地震放大作用,表明土层动力特性对凸起地形 地震动特性有很大影响.上述研究主要集中在有限 尺寸地形对地震动放大的探讨,对不同尺寸凸起地 形对地震动放大效应规律的研究还相当少.

为此,本文设计了不同尺寸凸起地形模型,其中 包括坡角度在30~60°,凸起高度20~80 m和平台 段宽度50~600 m共60个不同尺寸地形,引入动态 子结构法进行计算,以分析不同尺寸凸起地形在地

收稿日期: 2018-05-30

基金项目:国家自然科学基金(51638002);

重庆市教科委科学技术研究项目(KJ1602303)

作者简介:李英民(1968一),男,教授,博士生导师

通信作者: 王肖巍, wangxiaowei1984@126. com

震动输入下的响应规律,为实际工程中山地建筑地 震动设计提供参考.

1 动态子结构法求解过程

建立整体模型,并形成各子结构分析模型,对子 结构形成原始边界条件并提取各子结构主模态及对 应的刚度和质量矩阵.将主模态刚度矩阵,质量矩阵 进行分块处理,通过基于势能的截断准则截取主模 态的前k阶,以形成主模态矩阵[$\boldsymbol{\Phi}_{k}$],并按照式(1) 计算 $\boldsymbol{\theta}_{e}$ 以形成约束模态矩阵[$\boldsymbol{\Phi}_{e}$],再按照式(2) 求得坐标变换矩阵**T**.

$$\boldsymbol{\emptyset}_{\rm c} = -\boldsymbol{K}_{\rm II}^{-1}\boldsymbol{K}_{\rm IB}, \qquad (1)$$

式中: K_{II} 和 K_{IB} 分别是子结构刚度矩阵和子矩阵,下标 I表示子结构内部节点,B表示边界节点.

$$\begin{bmatrix} \overline{M} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} I \\ (M_{\mathrm{BI}} + \boldsymbol{\Phi}_{\mathrm{c}}^{\mathrm{T}} M_{\mathrm{II}}) \boldsymbol{\Phi}_{k} & M_{\mathrm{BB}} + \end{bmatrix}$$

根据对接边界上的位移协调式(6)和力的平衡 条件式(7),再按照"对号入座"的装配方式,将子结 构广义坐标下的运动方程进行合并组装,形成整体 体系运动方程式(8).

$$u_1^{\mathrm{B}} = u_2^{\mathrm{B}}, \qquad (6)$$

$$f_1^{\rm B} + f_2^{\rm B} = 0, \qquad (7)$$

$$[\widetilde{\boldsymbol{M}}] \{ \boldsymbol{q} \} + [\widetilde{\boldsymbol{C}}] \{ \dot{\boldsymbol{q}} \} + [\widetilde{\boldsymbol{K}}] \{ \boldsymbol{q} \} = \widetilde{F}(t). \quad (8)$$

式中: $[\widetilde{M}]$ 、 $[\widetilde{C}]$ 、 $[\widetilde{K}]$ 、 $\widetilde{F}(t)$ 分别为整体体系广义质量、阻尼、刚度和荷载矩阵.求解可得整体结构广义 坐标下位移时程 $\{q\}$,通过式(2)的坐标变换矩阵可求得物理坐标下的位移响应.

2 约束模态综合法验证

为验证动态子结构法在大型有限元计算中的正确性,采用整体法和 shake91 进行验算并与动态子结构法结果进行对比(仅考虑线弹性分析)^[9-10].

验算模型尺寸为:土体宽度 L = 5 000 m,深度 H = 400 m,边界为自由边界.其子结构划分为 A、B、 C、D 四个子结构,具体划分情况为:子结构 A 尺寸 为 5 000 m × 200 m,子结构 B 和 D 均为 1 500 m × 200 m,子结构 C 为 2 000 m × 200 m,详细划分见图 1.

$$\begin{cases} \boldsymbol{u}^{\mathrm{I}} \\ \boldsymbol{u}^{\mathrm{B}} \end{cases} = \begin{bmatrix} \boldsymbol{\varPhi}_{k} \boldsymbol{\varPhi}_{c} \end{bmatrix} \begin{cases} \boldsymbol{q}_{k} \\ \boldsymbol{u}^{\mathrm{B}} \end{cases} = \begin{bmatrix} \boldsymbol{\varPhi}_{k} & \boldsymbol{\varPhi}_{c} \\ 0 & \boldsymbol{I} \end{bmatrix} \begin{cases} \boldsymbol{q}_{k} \\ \boldsymbol{u}^{\mathrm{B}} \end{cases} = \boldsymbol{T} \cdot \boldsymbol{q}.$$

(2)

子结构物理运动方程左乘以T的转置得到子结构广义运动方程式(3),并通过式(4)和式(5)求子结构的广义刚度和质量矩阵 $[\overline{K}]$ 和 $[\overline{M}]$.

 $[\overline{M}] \{\overline{q}\} + [\overline{C}] \{\overline{q}\} + [\overline{K}] \{q\} = \overline{F}(t), (3)$ \vec{x} \oplus :

$$\begin{bmatrix} \overline{K} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} \Lambda_{k} & 0 \\ 0 & K_{\mathrm{BB}} + K_{\mathrm{BI}} \boldsymbol{\Phi}_{\mathrm{c}} \end{bmatrix} = \begin{bmatrix} \Lambda_{k} & 0 \\ 0 & \overline{K}_{\mathrm{BB}} \end{bmatrix}.$$
(4)

 $\boldsymbol{\Phi}_{k}^{\mathrm{T}}(\boldsymbol{M}_{\mathrm{II}}\boldsymbol{\Phi}_{\mathrm{c}} + \boldsymbol{M}_{\mathrm{IB}}) \\ \boldsymbol{M}_{\mathrm{BB}} + \boldsymbol{\Phi}_{\mathrm{c}}^{\mathrm{T}}\boldsymbol{M}_{\mathrm{II}}\boldsymbol{\Phi}_{\mathrm{c}} + \boldsymbol{\Phi}_{\mathrm{c}}^{\mathrm{T}}\boldsymbol{M}_{\mathrm{IB}} + \boldsymbol{M}_{\mathrm{BI}}\boldsymbol{\Phi}_{\mathrm{c}} \right] = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{\overline{M}}_{\mathrm{IB}} \\ \boldsymbol{\overline{M}}_{\mathrm{BI}} & \boldsymbol{\overline{M}}_{\mathrm{BB}} \end{bmatrix} .$ (5)

图1 验算模型

Fig. 1 Checking model

土体为基岩,弹性模量 $E = 1.323 \times 10^{10}$ N/m², 泊松比 $\nu = 0.25$,密度 $\rho = 2$ 700 kg/m³, SV 波波速为 $C_s = 2$ 425 m/s,材料阻尼比 $\xi = 0.05$,网格划分为 10 m,地震波输入同为岩石基站采集的天然波 3 条 Usa00418、Usa00146 和 Usa04466,其分别对应的峰 值加速度为 143.51、147.1、102.47 cm/s².由岩层底 部输入地震波,采集平地 1 号点位移及加速度响应 时程,计算结果见图 2.其中,以 shake 计算结果为 准,有限元计算整体法和子结构法计算结果及误差 见表 1.

由表1可知,与 shake 计算结果做对比,自由边 界整体有限元计算结果位移和加速度最大值误差均 在1.2%以内,子结构法误差均在2.5%以内.相比 与传统有限元法,子结构法可在保证计算精度的同 时大幅提高计算效率.

表1 不同方法计算结果对比

Tab. 1 Calculation results of different method
--

一十十	位移最大值/m			位移误差/	加速度最大值/(m・s ⁻²)			加速度	平均计算
刀法	Usa00418	Usa00146	Usa04466	%	Usa00418	Usa00146	Usa04466	误差/%	时间/s
子结构法	0.057 5	0.212 4	0.019 2	0.36	-2.251 2	2.273 6	1.611 4	2.49	957
整体法	0.0577	0.207 5	0.020 1	0.04	-2.274 4	2.215 3	1.563 5	1.14	10 300
shake	0.0577	0.206 3	0.021 3	_	-2.304 4	2.204 8	1.545 2	_	_

3 不同尺寸凸起地形对地震响应影响 规律分析

3.1 计算模型参数及地震波选取

土体边界采用自由场边界,为保证计算精度,土体宽度 L = 5 000 m,土体高度 H 为 400 m,台地高度 分别取 h = 20、40、60、80 m,边坡角度考虑 α = 30°、 45°、60°三种情况,坡顶平台段宽度分别取 d = 50、 100、200、400、600 m(经过大量计算所得,平台宽度 d 与高度 h 比值大于 8,平台宽度对地震动放大的影响程度很小,故本文平台最大宽度 d 取 600 m),由 于凸起平台左右对称,故采样点仅考虑左半模型,具体为下平台段 3 个点,坡脚坡顶各一个点,斜坡上 2 个点,坡顶平台 3 个点共计 10 个点.具体模型及子 结构划分情况见图 3(子结构详细尺寸同第 2 节).

场地土质为岩质坡地,模型的物理参数取值同 第2节.模型有限元参数取值为:单元网格尺寸应为 1/10~1/8个感兴趣的最小波长,由于计算模型感 兴趣频率均为0.1~15 Hz,故本文拟选用频段为 0.1~20 Hz的白噪声进行激励,对应的最小波长为 120 m 左右,故网格大小可选择12 m.有限元计算时 间间隔一般为Δt = 1/10×fmax,本文计算最大频率为 20 Hz,故时间间隔取 $\Delta t = 0.002$ s,本模型阻尼采用 瑞雷阻尼,为忽略阻尼对地形的影响,故模型阻尼系 数均取 $\delta = 0, \beta = 0.000$ 1.为反映地震动增大的真 实情况,本文随机选用峰值加速度为320 cm/s²,持 续时间为 20 s 的 20 条白噪声,取计算平均数作为 最后分析结果.

3.2 不同尺寸凸起地形对 PGA 的影响规律分析

通过动态子结构法的计算,求得各模型各观测 点最大加速度比值(其他观测点均以1号点为基准 点,除以1号观测点加速度得到加速度增大系数),分 析时域内不同尺寸凸起地形对地震动放大的影响.

由于文章篇幅有限, 仅给出 α30h20、α30h60、 α45h60 和 α60h60 四种情况加速度比值(其中 α 表 示坡角度值, h 表示平台凸起高度值), 具体结果见 图 4(图中 50、100、200、400、600 表示平台宽度 d = 50、100、200、400、600 m).

由图4可知,从1号点到10号点,各计算模型 最大加速度比值均有增加趋势,不同尺寸凸起地形 对加速度变化规律有一定影响,平台宽度不变情况 下,加速度随坡角度和凸起高度的增大而增大,但加 速度随坡角度变化的增大幅度很小,凸起高度的变 化对加速度增大程度影响很大.

从各观测点加速度增大程度来看,同等条件下, 由于平台中点受到斜坡面地震动反射叠加效果最为 明显,故凸起地形坡顶平台中点(10号点)增加趋势 最明显,平台中点(10号点)的加速度在不同尺寸地 形下的变化情况见图 5(图中 20、40、60、80 表示平 台高度 *h* = 20、40、60、80 m).

图 4 各点不同尺寸地形最大加速度比值

Fig. 4 Maximum acceleration ratio of different-size terrains at each point

图 5 平台中点(10 号点)不同平台宽度最大加速度放大系数

Fig. 5 Maximum acceleration variation curves of the midpoints (point 10) of platforms with different widths

由图 5 可知,平台宽度的变化对不同尺寸凸起 地形加速度放大规律有较大影响.当凸起高度很小时(*h*=20、40 m),加速度增大值随平台宽度的增大 呈先增大后略微减小的趋势,且整体变化程度不大; 当凸起地形尺寸变大,凸起高度为 *h*=40、60 m 时, 加速度增大值随平台宽度的增大呈减小趋势,且减 小趋势明显.不同模型中最大加速度减小百分率见 表 2(此百分率为平台宽度为 50 m 和 600 m 时的 10 号点最大加速度减小值),凸起高度越高,随平台宽度的增加各点最大加速度减小幅度越明显.

表 2 10 号点最大加速度减小百分率

Tab. 2 Percentage reduction of maximum acceleration at point 10

	最大	如速度减小百分率	<u>\$</u> /%
坝同/Ⅲ	坡角度 30°	坡角度 45°	坡角度 60°
20	-2.61	-3.45	-2.59
40	6.87	7.82	8.15
60	15.67	21.00	22.49
80	22.94	27.04	28.57

3.3 不同尺寸凸起地形对频谱特性的影响分析

计算了不同高度不同角度和不同平台宽度下各 模型的加速度反应谱,并用其他各观测点反应谱除 以1号观测点反应谱得到谱比值,分析频域内不同 观测点地震动放大效应.本节内容提取具有代表性 的部分模型结果进行规律分析,图6给出了坡角度 $\alpha = 30^{\circ}$,高度 h = 60 m,平台宽度 d = 200 m 各观测 点的谱比值(其它模型规律相似).

由图 6 可知,各点最大谱比值变化规律与加速 度最大比值变化规律一致,地震动放大效应随点号 的增大呈增大趋势,对于斜坡段,坡顶的谱比值高于 其他斜坡点,在坡顶平台段,平台中心(10 号点)谱 比值最大,其他平台点谱比随离平台中心的距离增 加 呈略微减小趋势,故以下均以10号点分析结果 (其他点规律相似)作为研究对象,分析频域内不同 尺寸凸起地形对坡顶地震动放大程度的影响.10号 点不同凸起地形尺寸下加速度反应谱计算结果见 图7(图中50、100、200、400、600表示平台宽度为 *d*=50、100、200、400、600 m).

图6 各点谱比值曲线

由图 7 可知,反应谱最大值随坡角度和高度的 增加呈增加趋势,且凸起地形尺寸的大小对反应谱 形状有很大影响.随地形尺寸增大(高度和宽度增 加),地形尺寸效应凸显,地形高频段(周期为0.2 s 左右)反应渐渐增大并呈现双峰,且第二峰值(0.7 s 左右)逐渐减小.说明地形尺寸的增大会使得高频 段振动加强,低频段响应相对减弱,此结论与李英民 等^[7]计算规律相似.为分析各模型反应谱增大程 度,10 号点不同尺寸凸起地形反应谱最大值变化曲 线见图 8(图中 20、40、60、80 表示平台高度 h = 20、 40、60、80 m).

由图 8 可知,规律与加速度结果类似,地 形尺寸相对较小时,凸起地形地震动响应随平 台宽度的增加呈先增加后减小趋势,且变化幅 度很小;地形尺寸较大时,地震动响应随平台宽 度增加而减小.不同尺寸模型 10 号点谱比曲线见图 9(图中 50、100、200、400、600 表示平台宽度 *d* = 50、 100、200、400、600 m).

Fig. 9 Spectral ratio curves of different models at point 10

由图9可知:1) 谱比值随着坡角的增加和坡高 度增加呈增大趋势,且随地形的宽度和高度的变化, 谱比峰值频段出现明显变化;2)当地形凸起尺寸相 对较小时(h = 20,40 m),由于局部地形过于平坦, 地形本身对地震动的放大效应整体不太明显.此时 随着凸起地形宽度增加,受长周期地震动影响比较 明显,其在周期为0.8 s 左右的低频段谱比值显著 增加;3)当地形凸起尺寸相对较大时(h=60、 80 m),地形尺寸效应开始凸显,地形对地震动高频 段响应变得敏感,此时随着凸起地形宽度的增加,谱 比在周期为0.2 s 左右高频段呈增加趋势,而在周 期为0.8 s 左右的低频段呈明显降低趋势. 由此可 知凸起地形尺寸的增加会增大地震动高频阶段响 应,减小低频段响应,在凸起高度达到一定高度时, 地形放大效应随平台宽度的增加总体呈减小趋势, 此结论与郝明辉等^[5]计算规律相似.

4 结 论

1)动态子结构法在保证大型有限元模型计算 精度的同时,能够有效提高计算效率.

2)不同尺寸凸起地形对地震加速度响应有很大 影响.相同尺寸地形下,在斜坡段,从坡角到坡顶加速 度呈增大趋势,坡顶平台段中心点加速度最大;且随 地形坡角和高度的增加,各点加速度均呈增加趋势.

3)地形宽度变化对加速度放大的影响相对复杂,在地形高度达到一定程度时,凸起地形各点加速 度随坡顶宽度增加而减小,且凸起尺寸高度越高减 小幅度越大;反之,各点加速度呈小幅增加趋势.

4)不同尺寸凸起地形对反应谱和谱比影响趋势与加速度响应规律相近.不同之处在于,地形凸起 高度的增加会激发高频段反应的加剧,同时降低低频段反应峰值.

参考文献

[1] 刘洪兵,朱稀. 地震中地形放大效应的观测和研究进展[J]. 世 界地震工程,1999,15(3):20

LIU Hongbing, ZHU Xi. Advance on topographic amplification effects of seismic response [J]. World Earthquake Engineering, 1999,15 (3): 20

- [2] 荣棉水,李小军. 局部地形对出平面运动谱特性的影响分析
 [J]. 中国地震,2007,23(2):147
 RONG Mianshui, LI Xiaojun. The effect analysis of topography on the spectrum property of anti-plane movement [J]. Earthquake
- [3] 荣棉水,李小军,吕悦军.平台地形地面运动特征周期值的影响 [J].中国地震,2009,25(2):178

Research in China, 2007, 23(2): 147

RONG Mianshui, LI Xiaojun, LU Yuejun. Effect of protruding topography on characteristic period of ground motion [J]. Earthquake Research in China, 2009, 25(2): 178

[4] 刘晶波.局部不规则地形对地震地面运动的影响[J]. 地震学报,1996,18(2):239

LIU Jingbo. Influence of local irregular topography on seismic ground motion[J]. Acta Seismologica Sinica, 1996, 18(2); 239

[5] 郝明辉,张郁山.凸起地形对地震动特性的影响[J].地震学报, 2014,36(5):883

HAO Minghui, ZHANG Yushan. Analysis of terrain effect on the

properties of ground motion. Acta Seismologica Sinica, $36(5)\,;\,883$

- [6] GEORGE D, ACHILLEAS G. Numerical evaluation of slope topography effects on seismic ground motion [J]. Soil Dynamics and Earthquake Engineering, 2005, 25:547
- [7] 李英民,王丽萍,赵耀. 岩质坡地建筑设计水平地震动放大系数的确定[J]. 地震工程与工程振动,2010,30(4):159
 LI Yingmin, WANG Liping, ZHAO Yao. Amplification factors of design horizontal ground motions for structures on rock slops[J]. Earthquake Engineering and Engineering Dynamics, 2010, 30(4): 159
- [8] 梁建文,巴振宁.弹性层状半空间中凸起地形对入射平面 SH 波的放大作用[J].地震工程与工程振动,2008,28(1):1
 LIANG Jianwen, BA Zhenning. Surface motion of a hill in layered half-space subjected to incident plane SH waves[J]. Earthquake Engineering and Engineering Dynamics, 2008,28(1):1
- [9] GE Z X, CHEN X F. An efficient approach for simulating wave propagation with the boundary element method in multilayered media with irregular interfaces [J]. Bulletin of the Seismological Society of America, 2008, 98(6): 3007
- [10] ZHANG W, CHEN X F. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation [J]. Geophysical Journal International, 2006, 7(1): 337

(编辑 赵丽莹)