DOI:10.11918/j.issn.0367-6234.201807074

考虑产品故障特征的目标选择性拆卸序列规划

杨得玉1,徐志刚1,朱建峰1,苏开远1,刘维民2

(1.山东大学 机械工程学院, 济南 250061;2.山东大学 深圳研究院, 广东 深圳 518057)

摘 要:针对实际拆卸过程中产品质量的不确定性和模糊性问题,特别是产品普遍存在的故障问题,对拆卸序列方案选择的 影响,提出了考虑产品故障特征的目标选择性拆卸序列规划方法.为便于表达产品拆卸信息,构建了拆卸混合图模型;通过提 取产品故障特征,构建了产品故障矩阵,并运用专家意见法推导了零部件故障特征与拆卸模型元素的关联度矩阵;为更新拆 卸混合图模型,运用模糊三角函数确定了零部件故障特征对拆卸模型元素的影响度,并根据影响度和专家阈值对拆卸模型元 素与拆卸信息进行修正以得到故障拆卸混合图模型;最终,基于产品的故障拆卸混合图模型结合拆卸序列优化算法生成了最 优的拆卸序列方案.本文以涡轮减速器为例对所提方法进行了验证,结果表明该方法更切合实际的拆卸过程,较好地解决了 产品故障对拆卸造成的模糊影响,极大地提高了拆卸序列方案的可行性和拆卸效率,降低了拆卸的盲目性,案例证明所提方 法对于解决拆卸序列规划问题更切实有效.

关键词:再制造;故障特征;关联度矩阵;故障拆卸混合图模型;拆卸序列规划

中图分类号: TH122 文献标志码: A 文章编号: 0367-6234(2019)07-0160-11

Objective selective disassembly sequence planning considered product fault features

YANG Deyu¹, XU Zhigang¹, ZHU Jianfeng¹, SU Kaiyuan¹, LIU Weimin²

(1. School of Mechanical Engineering, Shandong University, Jinan 250061, China;

2. Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China)

Abstract: In view of the influence of uncertainty and fuzziness of product quality in actual disassembly process, especially the common fault of product, on the selection of disassembly sequence, an objective selective disassembly sequence planning approach with fault features of product was proposed. A disassembly hybrid-graph model was constructed to express the constraints of a product and the product fault matrix was constructed by extracting product fault features. The relational degree matrix between the component fault features and the element of disassembly model was derived by the method of expert advices. The influence of the component fault features on the element of disassembly model was determined by the fuzzy trigonometric function to update the disassembly hybrid-graph model, and the disassembly model elements and disassembly information were modified based on the influence and thresholds to generate the fault disassembly hybrid-graph model. Finally, an optimal or suboptimal disassembly sequence scheme is generated by combining a disassembly sequence optimization algorithm. A case study of turbine reducer demonstrated that the proposed method was more practical in the actual disassembly process and could solve the fuzzy effect of product faults on the disassembly process, the feasibility of disassembly sequence scheme as well as the disassembly efficiency were greatly improved, and the blindness of disassembly was reduced effectively, which proved that the proposed method is more effective for solving disassembly sequence planning problem.

Keywords: remanufacture; fault features; relational degree matrix; fault disassembly hybrid-graph model; disassembly sequence planning

拆卸序列规划(Disassembly Sequence Planning, DSP)旨在生成零件或子装配体的拆卸顺序^[1],以满足拆卸成本、收益、拆卸方式等各种拆卸要求,其优

劣程度直接影响着废旧产品进行再利用和再制造活动的有效性和经济性.产品拆卸根据拆卸深度可分为完全拆卸与选择拆卸两类^[2],一般选择性拆卸应用较为广泛^[3].本文主要对目标选择性拆卸序列规划问题进行研究.

目前,针对 DSP 问题,国内外学者已经开发了 许多模型和方法,例如,AND/OR 图法^[4]、Petri 网 法^[5]、拆卸波方法^[2]以及各种启发式算法,例如,基

收稿日期: 2018-07-09

基金项目:深圳市科技创新委员会资助项目(JCYJ20160510165328965); 国家自然科学基金资助项目(61272017)

作者简介:杨得玉(1993—),男,硕士研究生

通信作者: 徐志刚,zhgxu@sdu.edu.cn

于遗传算法^[6-7]、粒子群算法^[8]、人工蜂群算法^[9]、 蚁群算法^[10-11]、花朵授粉算法^[12]等的拆卸序列规 划方法.上述研究主要集中在基于理想产品信息的 拆卸模型构建^[13]和算法开发上,而忽略了实际拆卸 过程中许多零部件存在的故障缺陷问题对拆卸模型 的影响.宋小文等^[14]研究了零部件不可拆问题; JEREMY L等^[15]通过产品服役时间与产品质量的 关系进行拆卸序列评估;ZHAO Shuen等^[16-17]基于 模糊成本构建了产品拆卸序列决策模型.上述研究 主要集中在产品不确定性质量对拆卸成本或收益的 随机影响模型上,未考虑零部件故障问题对产品零 部件拆卸关系的影响;同时,在实际拆卸中产品的质 量既有随机性又有模糊性,需要通过专家意见进行 评估.

为此,本文考虑到产品质量的不确定性,提取产品零部件的故障特征,采用专家意见和模糊函数确定零部件故障对拆卸模型元素的影响,并结合拆卸序列规划算法选择最佳拆卸序列方案,以提高拆卸序列的可行性和拆卸效率,降低拆卸的盲目性.

1 目标选择性拆卸信息模型

1.1 拆卸混合图模型

拆卸混合图是一种产品拓扑结构模型,描述了 产品零部件间的层次信息和约束关系,且易于计算 机语言表达和实现,本文以拆卸混合图模型为基础 进行研究.基本的产品拆卸混合图由三元组表示:

 $G = \langle V, Z, O \rangle$. (1) 式中:顶点集 $V = \{v_1, v_2, \dots, v_n\}$ 表示产品的基本拆 卸单元,如产品的零部件、子装配体等, n 为基本拆 卸单元的个数,产品拆卸混合图的顶点是基本拆卸 单元各种信息的封装体,包括零部件或子装配体的 标识、类型、几何特征及参数、数量、配合关系、剩余 价值、质量状态、拆卸该零部件或子装配体所需的拆 卸工具、拆卸方向、拆卸时间、拆卸收益等; $Z = \{z_1, z_2, \dots, z_l\}$ 为产品拆卸混合图的无向边集合,表示两 零部件之间存在直接接触关系; $O = \{o_1, o_2, \dots, o_m\}$ 为产品拆卸混合图的有向边集合,表示两零部件之 间存在拆卸优先级关系.在实际拆卸过程中,零部 件之间通常存在两种拆卸优先级关系:或优先约束 和与优先约束,其定义如下:

定义1 若零部件*i*和*j*都对零部件*k*同时存在 优先约束,只需拆除零部件*i*和*j*中的任意一个,就 能拆除零部件*k*,称零部件*i*和*j*为或关系,零部件*i* 和*j*对零部件*k*的优先约束称为或优先约束(关联 优先约束),在拆卸混合图模型中如图1(a)所示.

定义2 若零部件 i 和 j 同时对零部件 k 存在优

先约束,只有全部拆除零部件 *i* 和 *j*, 才能拆除零部件 *k*, 称零部件 *i* 和 *j* 为与关系,零部件 *i* 和 *j* 对零部件 *k* 的优先约束称为与优先约束(独立优先约束), 在拆卸混合图模型中如图 1(b)所示.

图1 两种优先约束关系

Fig.1 Two constraints of priority

根据产品拆卸混合图模型的顶点集、无向边集 和有向边集,可构建接触约束矩阵 *M*₁ 和优先约束 矩阵 *M*₂:

$$\boldsymbol{M}_{1} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

式中

 $A_{ij} = \begin{cases} 1 , \quad \text{零件 } i \text{ 和零件 } j \text{ 存在接触约束;} \\ 0 , \text{零H } i \text{ 和零H } j \text{ 不存在接触约束或 } i = j. \end{cases}$

$$\boldsymbol{M}_{2} = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{bmatrix}.$$

式中:

$$\left(\sum_{j=1}^{n} A_{ij} > 0\right)$$
 and $\left(\sum_{j=1}^{n} B_{ij} = 0\right)$. (2)

1.2 拆卸序列规划目标函数的建立

目标选择性拆卸旨在以最小的成本代价提取出 产品中用户指定的目标零部件或子装配体.因此, 拆卸成本是选择性拆卸序列规划的重要衡量标准. 国内外学者通常选择拆卸工具变换次数、拆卸方向 变换次数和拆卸时间作为产品拆卸成本的衡量指 标,拆卸成本一般认为与拆卸时间相关,按文献 [18]设定拆卸工具和方向变换的标准时间,可将目 标函数统一量纲,如式(3)所示;

 $d_{ij} = \begin{cases} 1, \& H_i & n_j & n_j & n_j \\ 0, \& H_i & n_j & n_j & n_j & n_j \\ 0, \& H_i & n_j \\ 0, \& H_i & n_j & n_j$

 $F(\cos t)$ 表示产品拆卸成本目标函数, t_j 表示拆 卸零件 j所需的拆卸时间,权重为 w_i , e_{ij} 表示零件 拆卸工具变化指标,权重为 w_e , t_e 表示拆卸工具变 换一次的标准时间, d_{ij} 表示零件拆卸方向变化指 标,权重为 w_d , t_d 表示拆卸方向变换一次的标准时 间.

传统的拆卸信息模型一般基于理想产品信息构 建,而产品在使用后一般存在多个故障缺陷.本文 将考虑产品模糊故障信息对拆卸信息模型元素 {*A_j*,*B_j*,*e_j*,*d_j*,*t_j*}的影响,选择产品拆卸序列方案.

2 产品故障特征影响模型

2.1 典型故障特征与表达

在实际拆卸过程中待拆卸对象的质量状态通常 较差,存在多种故障特征,例如,磨损、变形、断裂、腐 蚀、老化、孔洞、龟裂、松动、脱落等.根据产品故障 特征对零部件几何特征和功能造成的影响,可将零 部件故障特征分为5种类型,如表1所示.按零部件 是否存在相应的故障类型可建立产品零部件故障矩 阵U,如式(4)所示:

$$\boldsymbol{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} & u_{15} \\ u_{21} & u_{22} & u_{23} & u_{24} & u_{25} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n1} & u_{n2} & u_{n3} & u_{n4} & u_{n5} \end{bmatrix}, \quad (4)$$

$$\vec{x} \oplus u_{ij} = \begin{cases} 1, & \vec{x} \oplus \vec{h} \ i \ \vec{F} \ \vec{E} \ \vec{$$

fab.1 Ty	pe of	fault	features
----------	-------	-------	----------

标识	故障类型	包含的故障模式
f_1	变质型	老化、烧伤
f_2	退化型	磨损、腐蚀
f_3	损坏型	断裂、龟裂、孔洞
f_4	形变型	变形
f_5	松脱型	松动、脱落

由于产品零部件的故障信息具有模糊性,采用 模糊语言描述和量化,确定零部件故障的严重程度. 本文将零部件i的故障 f_j (即: u_{ij} =1)的故障程度划 分为五个等级,分别为S=[基本无故障,轻微故障, 一般故障,中度故障,严重故障],对应评价值如式 (5)所示.使用专家评判法确定故障程度,假设有N个专家分别对零部件i的故障 f_j 进行评判,评判结 果如式(6)所示:

$$S = [s_1, s_2, s_3, s_4, s_5] = [1, 2, 3, 4, 5], \quad (5)$$

$$\boldsymbol{H} = [h_1, h_2, h_3, h_4, h_5]. \tag{6}$$

式中: $h_k = \frac{n_{s_k}}{N}$, (k = 1, 2, 3, 4, 5) 表示故障程度为 s_k 时的模糊隶属度, n_{s_k} 表示选择故障程度 s_k 的专家人数. 将故障程度值与专家评价结果进行综合,可得到零部件 *i* 的故障 *f_i* 的特征值:

$$r_{ii} = \boldsymbol{S} \cdot \boldsymbol{H}^{\mathrm{T}}, \qquad (7)$$

式中 r_{ij} 为零部件i的故障 f_j 的模糊特征值, r_{ij} 越大, 表明零部件i的 f_j 故障越严重.利用式(7)可将式 (4)转化成产品零部件的故障特征值矩阵 R_1

$$\boldsymbol{R} = \begin{bmatrix} u_{11}r_{11} & u_{12}r_{12} & u_{13}r_{13} & u_{14}r_{14} & u_{15}r_{15} \\ u_{21}r_{21} & u_{22}r_{22} & u_{23}r_{23} & u_{24}r_{24} & u_{25}r_{25} \\ \vdots & \vdots & \vdots & \vdots \\ u_{n1}r_{n1} & u_{n2}r_{n2} & u_{n3}r_{n3} & u_{n4}r_{n4} & u_{n5}r_{n5} \end{bmatrix}.$$

$$\vec{x} \neq u_{ij}r_{ij} = \begin{cases} 0, & u_{ij} = 0; \\ u_{ij}r_{ij}, & u_{ij} = 1. \end{cases}$$

u_{ij}r_{ij} 为零部件*i*的*f_j* 故障的模糊特征值,则零部件*i*的故障特征值矩阵为

$$R_{i} = \begin{bmatrix} u_{i1}r_{i1} & u_{i2}r_{i2} & u_{i3}r_{i3} & u_{i4}r_{i4} & u_{i5}r_{i5} \end{bmatrix}.$$
 (8)
2.2 故障特征与拆卸模型元素的关联模型构建

在实际的拆卸操作中,拆卸信息模型中的元素 是否受到影响与零部件类型和故障类型相关.根据 零部件的约束关系和功能,零部件可以分为3种类 型,如表2所示.不同类型零部件的故障与拆卸模 型元素的关系一般如图2所示,图中连接线表示连 接线双方存在影响关系.根据图2零部件类型与故 障类型是否对拆卸模型元素产生影响,若产生影响, 值为1,否则值为0,可分别建立接触功能件、约束功 能件和联接件的故障类型与拆卸模型元素的关联矩 阵*l_a、l_b、l_c,*如公式(9)所示:

	A	В	e	d	t
	[0]	0	0	0	$0 \rceil f_1$
	0	0	0	0	$0 f_2$
$\boldsymbol{l}_a =$	0	0	0	0	$1 f_3,$
	0	1	1	0	$0 \left f_4 \right $
	1	1	0	0	$0 \int_{f_5}$
	A	В	e	d	t
	<i>A</i> [0	В 0	е 0	d0	t 0] f_1
	$ \begin{array}{c} A \\ \begin{bmatrix} 0 \\ 0 \end{array} $	В 0 0	е 0 0	d 0 0	t $0 \int_{1}^{f_{1}} f_{2}$
$I_b =$	$ \begin{array}{c} A \\ \begin{bmatrix} 0 \\ 0 \\ 0 \end{array} $	B 0 0 0	e 0 0 0	d 0 0 0	t $0 f_1$ $1 f_2$ $1 f_3,$
$l_b =$	$ \begin{array}{c} A \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	B 0 0 0 1	e 0 0 0 1	d 0 0 0	t $0 \downarrow f_1$ $1 \downarrow f_2$ $1 \downarrow f_3,$ $1 \downarrow f_4$

图 2 不同零部件的各类故障与拆卸模型元素的关系

Fig.2 Relationship between various faults of different parts and disassembly model elements

由零部件 *i* 的故障特征值矩阵(8) 和关联矩阵 (9),可推导得出零部件 *i* 的故障类型与拆卸模型元 素的关联度矩阵 *a*:

1) 若零部件i 为接触功能件,其关联度矩阵 α_i 为

$$\boldsymbol{\alpha}_i = \boldsymbol{R}_i^{\mathrm{T}} \otimes \boldsymbol{l}_a =$$

2) 若零部件 *i* 为约束功能件,其关联度矩阵 $\boldsymbol{\alpha}_i$ 为 $\boldsymbol{\alpha}_i = \boldsymbol{R}_i^{\mathrm{T}} \otimes \boldsymbol{l}_b =$

0	0	0	0	0	
0	0	0	0	$u_{i2}r_{i2}$	
0	0	0	0	$u_{i3}r_{i3}$	
0	$u_{i4}r_{i4}$	$u_{i4}r_{i4}$	$u_{i4}r_{i4}$	$u_{i4}r_{i4}$	
$u_{i5}r_{i5}$	$u_{i5}r_{i5}$	0	0	$u_{i5}r_{i5}$	

3) 若零部件 *i* 为联接件,其关联度矩阵 $\boldsymbol{\alpha}_i$ 为 $\boldsymbol{\alpha}_i = \boldsymbol{R}_i^{\mathrm{T}} \otimes \boldsymbol{l}_i =$

$$\begin{bmatrix} 0 & 0 & u_{i1}r_{i1} & 0 & 0 \\ 0 & 0 & u_{i2}r_{i2} & u_{i2}r_{i2} & u_{i2}r_{i2} \\ 0 & u_{i3}r_{i3} & 0 & 0 & 0 \\ 0 & 0 & u_{i4}r_{i4} & u_{i4}r_{i4} & 0 \\ u_{i5}r_{i5} & u_{i5}r_{i5} & 0 & 0 & u_{i5}r_{i5} \end{bmatrix}$$

2.3 故障特征的影响模式确定

为确定零部件各类故障的故障程度对拆卸模型 元素的模糊影响度和影响结果,使用模糊三角函数 作为评判结果的隶属度函数.将零部件故障特征对 拆卸模型元素的影响结果分别划分评判等级和等级 值,分别如下:

1) 对接触约束的影响等级划分为 $M_{A} = [a_{0}, a_{1}] = [0,1], 式中: <math>a_{0}$ 表示不需要更改接触约束, a_{1} 表示 需要更改接触约束.

2) 对优先约束的影响等级划分为 $M_B = [b_0, b_1] = [0,1]$, 式中: b_0 表示不需要更改优先约束, b_1 表示 需要更改优先约束.

3) 对拆卸工具的影响等级划分为 $E = [e_0, e_1] = [0,1], 式中: e_0$ 表示不需要更换拆卸工具或使用额 外的辅助拆卸工具, e_1 表示需要更换拆卸工具或使 用额外的辅助拆卸工具.

4) 对拆卸方向的影响等级划分为 $D = [d_0, d_1]$ = [0,1], 式中: d_0 表示不需要改变拆卸方向, d_1 表 示需要改变拆卸方向.

5) 对拆卸时间的影响等级划分为 $T = [t_0, k_1 t, k_2 t, \dots, k_i t]$, 式中: t_0 表示不需要改变拆卸时间,按 原拆卸时间计算,其值为 0, $k_i t$ 表示需要增加 k_i 倍的原拆卸时间.

根据零部件故障特征对拆卸模型元素影响结果的等级划分,采用模糊三角函数分别表达各影响结 果等级的隶属度函数.若论域 N 上的模糊数为 m, 则 m 的隶属度函数 $\mu_{\tilde{m}}$ 可表示为标准三角模糊函 数,如式(10)所示;其他特殊情况可由式(11)、(12) 表示.

$$\mu_{\tilde{m}}(x) = \begin{cases} \frac{x - m_1}{m_2 - m_1}, & m_1 \leq x < m_2; \\ \frac{m_3 - x}{m_3 - m_2}, & m_2 \leq x < m_3; \\ 0, & x \leq m_1 \text{ or } x \geq m_3. \end{cases}$$
(10)
$$\mu_{\tilde{m}}(x) = \begin{cases} 1, & x < m_1; \\ \frac{m_2 - x}{m_2 - m_1}, & m_1 \leq x < m_2; \\ 0, & x \geq m_2. \end{cases}$$
(11)
$$0, & x \geq m_2. \end{cases}$$
(12)

由于不同类型零部件的故障特征对拆卸模型元 素的影响存在差异,因此,根据关联矩阵(9)和式 (10)~(12)分别对接触功能件、约束功能件和联接 件设置隶属度函数,则接触功能件、约束功能件和联 接件的各类故障与其影响结果等级的隶属度函数分 别如图 3~5 所示(隶属度函数可根据产品情况调

 $x \ge m_{2}$

整),图中横坐标表示零件某类故障与某一拆卸模型元素的关联度值,纵坐标表示相应拆卸模型元素影响结果等级的隶属度.由此可确定零部件故障对拆卸模型元素的影响值,若零部件*i*的*f_j*故障与拆卸模型元素*g*的关联度值为 $u_{ij}r_{ij}$,根据隶属度函数,可以确定*f_j*故障对拆卸模型元素*g*在*r_{ij}*值时的影响结果等级值 $\Phi_{ij}^{e} = [\varphi_1, \varphi_2, \cdots]$ 及其隶属度 $I_{ij}^{e} = [\Delta i_1, \Delta i_2, \cdots]$,并计算*f_j*故障对拆卸模型元素*g*的影响值,如式(13)所示:

$$q_{ij}^{g} = \boldsymbol{\Phi}_{ij}^{g} \cdot \boldsymbol{I}_{ij}^{g^{\mathrm{T}}} = \sum_{k=1} \varphi_{k} \cdot \Delta i_{k}.$$
(13)

式中 q_{ij}^{g} 表示零部件 i 的 f_{j} 故障对拆卸模型元素 g 的影响值.

根据式(13)零部件故障类型的影响度和专家 给定的阈值,可决定是否修正对应的拆卸模型元素, 如式(14)~(18)所示:

$$\begin{cases} q_{ij}^{A} \leq Q_{ij}^{A}, & \text{T.mew} \text{T.mew}$$

(14)

$$\begin{cases} q_{ij}^{B} \leq Q_{ij}^{B}, & \text{ T.m. Rewards the inftheory}, \\ Q_{ij}^{B} < q_{ij}^{B} < 1, & \text{ mand means the inftheory}, \\ q_{ij}^{B} = 1, & \text{ mand means the inftheory}, \end{cases}$$

(15)

 $e_{i}^{*} = \begin{cases} e_{i} + 1, q_{ij}^{e} > Q_{ij}^{e} \text{ 则需要更换或使用辅助工具;} \\ e_{i}, \quad q_{ij}^{e} \leq Q_{ij}^{e} \text{ 则无需更换或使用辅助工具.} \end{cases}$ (16)

 $d_i^* = \begin{cases} d_i + 1, \ q_{ij}^d > Q_{ij}^d \text{ 则需要更改零件 } i \text{ 拆卸方向}; \\ d_i, \quad q_{ij}^d \leq Q_{ij}^d \text{ 则无需更改零件 } i \text{ 拆卸方向}. \end{cases}$ (17)

$$t_i^* = t_i + \sum_{i=1}^5 q_{ij}^i.$$
 (18)

图 3 接触功能件的各类故障对相应拆卸模型元素影响结果等级的隶属度函数

Fig.3 Membership functions of the effect-level of various faults of a on corresponding disassembly model elements

Fig.4 Membership functions of the effect-level of various faults of b on corresponding disassembly model elements

Fig.5 Membership functions of the effect-level of various faults of c on corresponding disassembly model elements

式中: t_i * 表示零部件 *i* 修正后的拆卸时间, t_i 表示零部件 *i* 的原拆卸时间, e_i * 表示拆卸零部件 *i* 的修正拆卸工具变换次数, e_i 表示拆卸零部件 *i* 的 原拆卸工具变换次数, d_i * 表示拆卸零部件 *i* 的修 订拆卸方向变换次数, d_i 表示拆卸零部件 *i* 的原拆 卸方向变换次数, $Q_{ij}^{A}, Q_{ij}^{B}, Q_{ij}^{e}, Q_{ij}^{d}, Q_{ij}^{t}$ 分别为修正阈 值,由专家给出.

3 基于产品故障特征的拆卸序列规划

3.1 修正拆卸信息模型

按产品的故障特征和影响结果,对传统产品拆 卸混合图模型进行修正和补充得到故障拆卸混合图 模型,用六元组表示:

 $\boldsymbol{G} = \langle \boldsymbol{V}_a, \boldsymbol{V}_b, \boldsymbol{V}_c, \boldsymbol{V}_u, \boldsymbol{Z}^*, \boldsymbol{O}^* \rangle.$

式中: V_a 表示接触功能件顶点集合, V_b 表示约束功能件顶点集合, V_c 表示联接件顶点集合, V_a 表示故 障零部件顶点集合, Z^* 表示修正无向边集合, O^* 表 示修正有向边集合.根据故障拆卸混合图,可重新构 建修正接触约束矩阵 M_1^* 和修正优先约束矩阵 M_2^* .

同时,根据修正拆卸工具变换次数、修正拆卸方 向变换次数和修正拆卸时间,重新构建拆卸序列优 化的目标函数,如式(19)所示:

$$F(\cos t)^{*} = \sum_{j=1}^{n} w_{e} e_{ij}^{*} t_{e} + \sum_{j=1}^{n} w_{d} d_{ij}^{*} t_{d} + \sum_{j=1}^{n} w_{i} t_{j}^{*}.$$
(19)

式中: $F(\cos t)^*$ 表示产品修正拆卸成本目标函数, t_j^* 表示拆卸零部件 j 所需的修正拆卸时间, e_{ij}^* 表示 零部件修正拆卸工具变换指标, d_{ij}^* 表示零部件修 正拆卸方向变换指标.

3.2 拆卸序列规划遗传算法

遗传算法借鉴自然进化规律以得到最优个体. 具有全局寻优性、鲁棒性等特点,因此本文结合遗传 算法进行拆卸序列优化.

对于 DSP 问题,遗传算法可直接使用零部件编 号进行编码,例如个体编码(4,3,7,5,1,2,6)表示需 要拆卸的零部件编号依次为·4→3→7→5→1→2→6.

交叉操作采用双点交叉,假设有 2 个体 A 和 B, 随机产生2个交叉位置,将2个交叉位置之间的部 分进行互换,剔除重复零件编号并依次补充缺失的 零部件编号,生成2个新个体A*和B*,例如:

 $⇒ \frac{\uparrow \& A:6 \ 3}{\uparrow \& B:3 \ 4} \begin{vmatrix} 4 \ 7 \ 1 \\ 5 \ 7 \ 2 \end{vmatrix} \begin{vmatrix} 5 \ 2 \\ 1 \ 6 \end{vmatrix} \underbrace{5 \ 7 \ 2}_{3 \ 4} \begin{vmatrix} 6 \ 3 \\ 6 \ 3 \end{vmatrix} \underbrace{6 \ 3}_{3 \ 4}$ 1 2 16

⇒(去除重复编号并补充缺少编号)

新个体 A*:6357214

新个体 B*:3427156

变异操作采用单点变异,假设拆卸序列个体 A:(1,3,2,4,5,6,7),若随机产生的变异位置分别 为第3位和第7位,将第3位置上的零部件编号移 到第7位置上,产生新个体A*:(1,3,4,5,6,7,2).

若经过交叉和变异的子个体的适应度优于父个 体,则用子个体替换父个体形成新的群体,并遗传到 下一代. 拆卸序列遗传算法的主要步骤如下:

Step 1 设置种群大小 popsize, 交叉概率 pcro, 变异概率 pmut,最大迭代次数 pgen,随机产生一组 个体,构成初始种群.

计算种群中个体的适应度值 Step 2 $F_{i}(cost)^{*}$,并保存当前种群中的最优个体,并判断 是否满足收敛条件,若满足执行 step 7,否则执行 step 3 至 step 6.

Step 3 执行选择操作,复制新群体遗传到下 一代.

Step 4 将种群个体两两随机配对,若随机数 rand[0,1]<pcro,则执行双点交叉操作;否则不执行 交叉操作.

Step 5 若随机数 rand [0,1] < pmut,则执行单 点变异操作;否则不执行变异操作.

Step 6 若子个体的适应度优于父个体,则用 子个体替换父个体,返回 Step 2.

Step 7 输出适应度最优的个体和适应度值.

4 实 例

以涡轮减速器为例,分析其故障因素对拆卸信 息模型的影响,选择拆卸序列方案. 涡轮减速器由

25个零部件组成,如图6所示.零部件的原始拆卸 信息如表 3 所示. 根据产品装配关系和空间位置约 束,可得出涡轮减速器的原始拆卸混合图,如图7所 示,图中无向边上的数字为联接件的编号,表示无向 边两边的顶点由联接件连接,无向边上的联接件在 拆卸时优先于两端顶点. 据统计,涡轮减速器主要 存在油封、密封垫破损,蜗杆、蜗轮磨损或损坏,轴承 牛锈、腐蚀或损坏,螺栓牛锈、腐蚀、松动,传动装置 固定不良等故障.

Fig.6 Drawing of turbine reducer

表 3 涡轮减速器零部件信息表

Information table of turbine reducer parts Tab.3

标号	名称	数量	上 拆卸工具	拆卸方向	拆卸 时间/s	类型
1	壳体(固定)	1	_	_	_	b
2	黄油嘴	1	扳手 T1	+ z	18	b
3	涡轮轴端盖垫片	1	专用工具 T2	- y	5	a
4	内六角圆柱头螺钉	· 4	内六角扳手 T.	3 + y	60	c
5	涡轮轴端盖1	1	人工拆除 70	+ y	10	a
6	骨架油封1	1	手锤 T4	- y	8	b
7	涡轮轴轴承1	1	手锤 T4	+ y	15	b
8	涡轮	1	专用工具 T5	+ y	8	b
9	涡轮轴	1	手锤 T4	- y	8	b
10	开槽平端紧定螺钉	3	螺丝刀 T6	- y	30	c
11	涡轮轴轴承2	1	手锤 T4	- y	15	b
12	骨架油封2	1	手锤 T4	+ y	8	b
13	涡轮轴端盖2	1	人工拆除 70	- y	10	a
14	内六角圆柱头螺钉	4	内六角扳手 T.	3 <i>- y</i>	80	c
15	内六角圆柱头螺钉	4	内六角扳手 T.	3 – x	60	c
16	蜗杆轴端盖1	1	人工拆除 70	- x	8	a
17	油封1	1	钳具 T7	+ <i>x</i>	6	b
18	蜗杆轴承1	1	手锤 T4	- x	15	b
19	轴承盖垫片1	1	专用工具 T2	- x	5	a
20	蜗杆	1	专用工具 T5	- x	8	b
21	轴承盖垫片2	1	专用工具 T2	+ <i>x</i>	5	a
22	蜗杆轴承 2	1	手锤 T4	+ <i>x</i>	15	b
23	油封2	1	钳具 T7	- x	6	b
24	蜗杆轴端盖2	1	人工拆除 70	+ x	8	a
25	内六角圆柱头螺钉	· 4	内六角扳手 T.	3 + x	60	c

图 7 涡轮减速器原始混合图模型

Fig.7 Original hybrid graph model of turbine reducer

为了便于进行拆卸序列规划,可根据涡轮减速 器存在的故障特征,对涡轮减速器进行简单分类. 某一类涡轮减速器主要存在零件17磨损、断裂,零 件6、12和23磨损,零件8磨损、断裂,零件25松 动、腐蚀,零件15腐蚀,零件18变形损坏故障.利用 式(4)建立涡轮减速器零部件故障矩阵U,如式 (20)所示,为便于表达,式中已将部分无故障的零 部件省略.根据10位专家对零部件各类故障程度 的评估,利用式(7)计算各零部件故障的模糊特征 值,如表4所示.根据式(20)和表4可得到涡轮减 速器零部件的故障特征值矩阵R,如式(21)所示.

表 4	零部件故障的模糊特征值

Tab.4 Fuzzy values of parts failures

零件	故障类	型	识	判结界	₹ H		特征值r	ij
6	f_2	[0]	0.1	0.′	7 0	.2 0]	3.1	
8	f_2	[0]	0	0.6	0.3	0.1]	3.5	
8	f_3	[0]	0	0	0.2	0.8]	4.8	
12	f_2	[0]	0.1	0.′	7 0	.2 0]	3.1	
15	f_2	[0]	0.	6 0	.4	0 0]	2.4	
17	f_2	[0]	0.1	0.′	7 0	.2 0]	3.1	
17	f_3	[0	0	0	0.4	0.6]	4.6	
18	f_4	0	0	0	0.4	0.6]	4.6	
23	f_2	$\lfloor 0 \rfloor$	0.1	0.′	7 0	.2 0]	3.1	
25	f_2	$\begin{bmatrix} 0 \end{bmatrix}$	0.	6 0	.4		2.4	
25	f_5	$\lfloor 0$	0.	8 0	.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	2.2	
	[:]	÷	÷	÷	:]:		
	0	1	0	0	0	6		
	0	0	0	0	0	7		
	0	1	1	0	0	8		
	1	:	:	÷	÷	:		
	0	1	0	0	0	12		
	:	÷	÷	÷	÷	1:		
\boldsymbol{U} :	= 0	1	0	0	0	15	(20)
	0	0	0	0	0	16		
	0	1	1	0	0	17		
	0	0	0	1	0	18		
	:	:	:	÷	÷	:		
	0	1	0	0	0	23		
	0	0	0	0	0	24		
	0	1	0	0	1	25		

	:	÷	÷	÷	: -	:	
	0	3.1	0	0	0	6	
	0	0	0	0	0	7	
	0	3.5	4.8	0	0	8	
	÷	÷	÷	÷	÷	÷	
	0	3.1	0	0	0	12	
	÷	÷	÷	÷	÷	÷	
R =	0	2.4	0	0	0	15	(21)
	0	0	0	0	0	16	
	0	3.1	4.6	0	0	17	
	0	0	0	4.6	0	18	
	÷	÷	÷	÷	÷	÷	
	0	3.1	0	0	0	23	
	0	0	0	0	0	24	
	0	2.4	0	0	2.2	25	

根据出现故障的零部件类型,利用式(9)和式 (21)可分别得出各故障零部件的故障特征与拆卸 模型元素的关联度矩阵,如下所示:

α_{e}	; = .	$\boldsymbol{R}_6^{\mathrm{T}}$	\otimes	$l_b =$			α	$_{8} = \mathbf{R}$	8 ₈ [™] ⊗	$\boldsymbol{l}_b =$	
0	0	0	0	0]			[0	0	0 0	0]	
0	0	0	0	3.1			0	0	0 0	3.5	
0	0	0	0	0	,		0	0	0 0	4.8	,
0	0	0	0	0			0	0	0 0	0	
0	0	0	0	0			_0	0	0 0	0	
α_{12}	2 =	R_{12}	T (X)	$l_b =$			α_{15}	= R ₁₅	$^{\mathrm{T}}\otimes \boldsymbol{l}$	_c =	
0	0	0	0	0]		۲	0 0	0	0	0]	
0	0	0	0	3.1			0 0	2.4	2.4	2.4	
0	0	0	0	0	,		0 0	0	0	0	,
0	0	0	0	0		(0 0	0	0	0	
0	0	0	0	0		[0 0	0	0	0	
α_{12}	, = ,	R ₁₇	T	$\boldsymbol{l}_b =$			$\alpha_{18} =$	R ₁₈	$\Gamma \otimes \boldsymbol{l}_b$	=	
α_{12}	, = . 0	R ₁₇	т ⊗ 0	$l_b = 0$		[0	$\alpha_{18} = 0$	\mathbf{R}_{18}	$rac{1}{0} \otimes oldsymbol{l}_b$	= 0]	
α_{12} $\begin{bmatrix} 0\\ 0 \end{bmatrix}$, = , 0 0	R ₁₇ 0 0	т ⊗ 0 0	$\begin{bmatrix} 0 \\ 3.1 \end{bmatrix}$ =		$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\alpha_{18} = 0 \\ 0 \\ 0$	\mathbf{R}_{18}	$egin{array}{c} \Gamma \otimes oldsymbol{l}_b \ 0 \ 0 \end{array}$	= 0 0	
α_{12} $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$, = , 0 0 0	R ₁₇ 0 0 0	т (Х) 0 0 0	$ \begin{vmatrix} \mathbf{l}_b \\ 0 \\ 3.1 \\ 4.6 \end{vmatrix} $,	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	$\alpha_{18} = 0$ 0 0	R_{18}	$egin{array}{c} \Gamma \otimes oldsymbol{l}_b \ 0 \ 0 \ 0 \ 0 \end{array}$	= 0 0 0	,
$\begin{array}{c} \alpha_{12} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$, = , 0 0 0 0	R ₁₇ 0 0 0 0	т (Х) 0 0 0 0	$ \begin{vmatrix} \mathbf{l}_b \\ \mathbf{l}_b \\ 0 \\ 3.1 \\ 4.6 \\ 0 \end{vmatrix} $,	0 0 0 0	$ \alpha_{18} = 0 $ 0 0 4.6	R_{18} 0 0 0 4.6	$egin{array}{c} \Gamma \otimes oldsymbol{l}_b \ 0 \ 0 \ 0 \ 4.6 \end{array}$	= 0 0 0 4.6	,
$ \begin{array}{c} \alpha_{17} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	y = 2 0 0 0 0 0 0 0	R ₁₇ 0 0 0 0 0 0	т (Ж 0 0 0 0 0 0	$\begin{bmatrix} 0 \\ 3.1 \\ 4.6 \\ 0 \\ 0 \end{bmatrix}$,	0 0 0 0 0	$ \alpha_{18} = 0 $ 0 0 4.6 0	R_{18} 0 0 0 4.6 0	$egin{array}{c} \Gamma \otimes oldsymbol{l}_b \ 0 \ 0 \ 4.6 \ 0 \end{array}$	= 0 0 4.6 0	,
$ \begin{array}{c} \alpha_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \alpha_{22} \end{array} $	y = 2 0 0 0 0 0 0 0 0	R_{17} 0 0 0 0 0 0 0 R_{23}	т (0 0 0 0 0 0 0 т ()	$ \begin{array}{c} 0 \\ 0 \\ 3.1 \\ 4.6 \\ 0 \\ 0 \end{array} \right] $,	$\begin{bmatrix} 0\\0\\0\\0\\0\\0\end{bmatrix}$	$ \alpha_{18} = 0 $ 0 0 4.6 0 $ \alpha_{25} = 0 $	R_{18}^{T} 0 0 0 4.6 0 R_{25}^{T}	$egin{array}{ccc} & & & & I_b \ & & 0 \ & 0 \ & 0 \ & 0 \ & 4.6 \ & 0 \ & \otimes & I_c \end{array}$	= 0 0 4.6 0	,
$ \begin{array}{c} \alpha_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ \alpha_{22} \\ \end{array} $	y = 2 0 0 0 0 0 0 0 0	R_{17} 0 0 0 0 0 0 0 R_{23} 0	т ⊗ 0 0 0 0 0 0 1 ⊗	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$,	$\begin{bmatrix} 0\\0\\0\\0\\0\end{bmatrix}$	$ \alpha_{18} = 0 $ 0 0 4.6 0 $ \alpha_{25} = 0 $	R_{18}^{T} 0 0 0 4.6 0 R_{25}^{T} 0	$egin{array}{c} \Gamma \otimes oldsymbol{l}_b \ 0 \ 0 \ 0 \ 4.6 \ 0 \ \otimes oldsymbol{l}_c \ 0 \ \end{array}$	$ = \ \ \ \ \ \ \ \ \ \ \ \ \$,
$ \begin{array}{c} \alpha_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ \alpha_{22} \\ \end{array} $	$y_{1} = 2$ 0 0 0 0 0 0 0 0	R ₁₇ 0 0 0 0 0 0 0 R ₂₃ 0 0 0	<pre>T ⊗</pre> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$,	$\begin{bmatrix} 0\\0\\0\\0\\0\end{bmatrix}$	$ \alpha_{18} = 0 $ 0 0 4.6 0 $ \alpha_{25} = 0 $ 0 0 0 0 0 0 0 0 0	R_{18}^{T} 0 0 0 4.6 0 R_{25}^{T} 0 2.4	$\begin{matrix} \mathbf{r} \otimes \boldsymbol{l}_b \\ 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \\ \otimes \boldsymbol{l}_c \\ 0 \\ 2.4 \end{matrix}$	$ = \ \ \ \ \ \ \ \ \ \ \ \ \$,
$ \begin{array}{c} \alpha_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ \alpha_{22} \\ \end{array} $	$y_{1} = \frac{1}{2}$ 0 0 0 0 0 0 0 0	R_{17} 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>T ⊗</pre> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0 \\ \mathbf{I}_{b} \\$,	$\begin{bmatrix} 0\\0\\0\\0\\0\end{bmatrix}$	$ \alpha_{18} = 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \\ \alpha_{25} = 0 \\ 0 \\ 0 \\ 0 $	R_{18}^{T} 0 0 0 4.6 0 R_{25}^{T} 0 2.4 0	$\begin{matrix} \mathbf{r} \otimes \boldsymbol{l}_b \\ 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \\ \otimes \boldsymbol{l}_c \\ 0 \\ 2.4 \\ 0 \end{matrix}$	$ = \begin{matrix} 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \end{matrix} \end{bmatrix} $ $ = \begin{matrix} 0 \\ 2.4 \\ 0 \end{matrix} $,
$ \begin{array}{c} \alpha_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ \alpha_{22} \\ \end{array} $	$y_{1} = 2$ 0 0 0 0 0 0 0 0	R ₁₇ 0 0 0 0 0 0 0 0 0 0 0 0 0	т (Ж) 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0 \ I_{b} = \\ 0 \\ 3.1 \\ 4.6 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 3.1 \\ 0 \\ 3.1 \\ 0 \\ 0 \\ \end{array} $,	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$ \alpha_{18} = 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \\ \alpha_{25} = 0 \\ 0 \\ 0 \\ 0 \\ 0 $	R_{18}^{T} 0 0 0 4.6 0 R_{25}^{T} 0 2.4 0 0	$\begin{array}{c} \mathbf{f} \otimes \boldsymbol{l}_{b} \\ 0 \\ 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \\ 0 \\ 0 \\ \mathbf{l}_{c} \\ 0 \\ 2.4 \\ 0 \\ 0 \end{array}$	$= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4.6 \\ 0 \end{bmatrix}$ $= \begin{bmatrix} 0 \\ 2.4 \\ 0 \\ 0 \end{bmatrix}$,

根据关联度矩阵,使用式(13)和图 3~图 5 中 的隶属度函数分别计算故障零部件的影响度,并修 正拆卸模型元素,如表 5 所示.拆卸元素修正后重 新构建涡轮减速器的故障混合图模型,如图 8 所示, 图中黑色节点表示出现故障的零部件,其修正的拆 卸信息如表 5 所示. 基于图 8 及其修正后的拆卸元 素,以式(19)作为目标适应度函数,式中 $t_e = 8$ s, $t_d = 4$ s,权重比为: $w_e : w_d : w_t = 1 : 1 : 1$,以零件 20 作为目标零件,运用遗传算法进行拆卸序列规划,并 与不考虑故障因素的拆卸序列规划结果作对比,分 别设置种群大小 popsize = 30,交叉概率 pero = 0.7,变 异概率 pmut = 0.1,最大迭代次数 pgen = 500,则两种 情况的迭代收敛曲线和结果分别如图 10 和表 6 所 示.受产品故障的模糊影响,导致拆卸零件 20 的拆 卸成本增加,但未改变最优拆卸序列路径,更切

合实际的拆卸过程,降低了拆卸的盲目性.

图 8 涡轮减速器故障混合图模型

Fig.8 Fault-hybrid graph model for turbine reducer

表 5 蜗轮减速器故障零部件的影响度与拆卸模型元素修正

Tab.5 Influence degree of failure parts to turbine reducer and modification of dismantling model elements

零件	影响度与拆卸元素修正	阈值
6	$q_{62}^{t} = \mathbf{T} \cdot \mathbf{I}_{62}^{t}^{T} = 0.21t_{6} = 0.21 \times 8 = 1.68 \text{ s}$	_
0	修正: $t_6^* = t_6 + q_{62}^t = 8 + 1.68 = 9.68$ s	_
0	$q_{82}^{t} = \mathbf{T} \cdot \mathbf{I}_{82}^{t}^{T} = 0.25t_{6} = 0.25 \times 8 = 2 \text{ s}; q_{83}^{t} = \mathbf{T} \cdot \mathbf{I}_{83}^{t}^{T} = 0.24t_{8} = 0.24 \times 8 = 1.92 \text{ s}$	_
0	修正: t_8 * = t_8 + q_{82}^t + q_{83}^t = 8 + 2 + 1.92 = 11.92 s	_
10	$q_{12\ 2}^{t} = \mathbf{T} \cdot \mathbf{I}_{12\ 2}^{t} = 0.21t_{12} = 0.21 \times 8 = 1.68 \text{ s}$	_
12	修正: $t_{12}^* = t_{12} + q_{122}' = 8 + 1.68 = 9.68$ s	_
15	$q_{15\ 2}^{e} = \boldsymbol{E} \cdot \boldsymbol{I}_{15\ 2}^{e} \stackrel{\mathrm{T}}{=} \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.8 \\ 0 \end{bmatrix} = 0; \ q_{15\ 2}^{d} = \boldsymbol{D} \cdot \boldsymbol{I}_{15\ 2}^{d} \stackrel{\mathrm{T}}{=} \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0; \ q_{15\ 2}^{t} = \boldsymbol{T} \cdot \boldsymbol{I}_{15\ 2}^{t} \stackrel{\mathrm{T}}{=} 0.08t_{15} = 0.08t_{15} $	$Q_{15\ 2}^{e} = 0.5$
10	0.08×60=4.8 s	$Q_{15\ 2}^d$ = 0.6
	修正 · e _x * = e _x : d_x * = d_x : t_x * = t_x + d_x = 60 + 4.8 = 64.8 s :	_
	$q_{17,2}^{t} = \mathbf{T} \cdot \mathbf{I}_{17,2}^{t} = 0.21 t_{17} = 0.21 \times 6 = 1.26 \text{ s}; q_{17,2}^{t} = \mathbf{T} \cdot \mathbf{I}_{17,2}^{t} = 0.18 t_{17} = 0.18 \times 6 = 1.08 \text{ s}$	_
17	修正: $t_{17}^* = t_{17} + q_{17,2}^t + q_{17,3}^t = 6 + 1.26 + 1.08 = 8.34$ s	_
18	$q_{18\ 4}^{B} = \boldsymbol{M}_{B} \cdot \boldsymbol{I}_{18\ 4}^{B} \stackrel{\mathrm{T}}{=} \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.8 \end{bmatrix} = 0.8; q_{18\ 4}^{e} = \boldsymbol{E} \cdot \boldsymbol{I}_{18\ 4}^{e} \stackrel{\mathrm{T}}{=} \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.8 \end{bmatrix} = 0.8; q_{18\ 4}^{d} = \boldsymbol{D} \cdot \boldsymbol{I}_{18\ 4}^{d} \stackrel{\mathrm{T}}{=} = \mathbf{D} \cdot \boldsymbol{I}_{18\ 4}^{e} \stackrel{\mathrm{T}}{=} = \mathbf{D} \cdot I$	$Q_{18\ 4}^{e} = 0.75$
10	$\begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} = 0.8; q_{18\ 4}^t = \mathbf{T} \cdot \mathbf{I}_{18\ 4}^t = 0.62t_{18} = 0.62 \times 15 = 9.3 \text{ s}$	$Q_{18\ 4}^d = 0.85$
	() IE: $e_{18} = e_{18} + 1$; $d_{18} = d_{18}$; $t_{18} = t_{18} + q_{184} = 15 + 9.3 = 24.3 \text{ s}$;	_
22	$q_{23\ 2}^{t} = \mathbf{T} \cdot \mathbf{I}_{23\ 2}^{t} = 0.21 t_{23} = 0.21 \times 6 = 1.26 \text{ s}$	_
23	修正: t_{23} * = t_{23} + q_{232} = 6 + 1.26 = 7.26 s	_
~ ~	$q_{25\ 2}^{e} = \boldsymbol{E} \cdot \boldsymbol{I}_{25\ 2}^{e} \stackrel{\mathrm{T}}{=} \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.8 \\ 0 \end{bmatrix} = 0; q_{25\ 2}^{d} = \boldsymbol{D} \cdot \boldsymbol{I}_{25\ 2}^{d} \stackrel{\mathrm{T}}{=} \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0; q_{25\ 2}^{t} = \boldsymbol{T} \cdot \boldsymbol{I}_{25\ 2}^{t} \stackrel{\mathrm{T}}{=} 0.08t_{25\ 2} = \mathbf{I} \cdot \boldsymbol{I}_{25\ 2}^{t} \stackrel{\mathrm{T}}{=} 0.08t_{25\ 2} \stackrel{\mathrm{T}}{=} 0.08t_{25\ 2} = \mathbf{I} \cdot \boldsymbol{I}_{25\ 2}^{t} \stackrel{\mathrm{T}}{=} 0.08t_{25\ 2} \stackrel{\mathrm{T}}{=} 0.$	$Q_{25\ 2}^{e} = 0.5$
25	$0.08 \times 60 = 4.8 \text{ s}; q_{25\ 5}^{A} = a_1 \cdot \boldsymbol{I}_{25\ 5}^{A} = [1] \cdot [0] = 0; q_{25\ 5}^{B} = b_1 \cdot \boldsymbol{I}_{25\ 5}^{B} \stackrel{\mathrm{T}}{=} [1] \cdot [0] = 0; q_{25\ 5}^{t} = \boldsymbol{T} \cdot \boldsymbol{I}_{25\ 5}^{t} \stackrel{\mathrm{T}}{=} -0.14t_{25} = 0.14t_{25} = 0.$	$Q_{25\ 2}^d$ = 0.6
	$-0.14 \times 60 = -8.4 \text{ s}$	
	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	_

假设有一涡轮减速器除了出现以上故障外,零件 10 存在脱落故障,即 q^A₁₀₅ = 1; q^B₁₀₅ = 1. 根据故障特征建立故障混合图模型,如图 9 所示. 基于图 9,以零件 8 作为目标零件,运用上述遗传算法设置进行拆卸序列规划,并与不考虑故障因素的拆卸序列规划结果作对比,两种情况的迭代收敛曲线和结果分别如图 11 和表 7 所示. 受产品故障的模糊影响,

拆卸零件8时不需要再拆卸零件11和10,拆卸序列由"4-5-7-11-10-8"优化为"4-5-7-8",优化了拆卸序列路径,极大地提高了拆卸序列在实际拆卸过程中的可行性,拆卸成本也由178 s降低为120.92 s,拆卸成本降低了32.07%,明显提高了拆卸效率,降低了拆卸盲目性.

表 6								
Tab.6 Optimization results of disassembly sequence to worm								
类型	目标零部件	最优适应度/s	迭代次数	最优拆卸序列				
无故障影响	零部件 20	210	213	25-15-16-24-22-18-20				
考虑故障影响	零部件 20	224.5	187	25-15-16-24-22-18-20				
		丰 7 涡轮折知应列伏	化结甲					

_ . _ . _ _ _

表 7 涡轮拆卸序列优化结果

	Tab./ Optimiza	tion results of disassening	sequence to worm whe	
类型	目标零部件	最优适应度/s	迭代次数	最优拆卸序列
无故障影响	零部件8	178	193	4-5-7-11-10-8
考虑故障影响	零部件8	120.92	58	4-5-7-8

Optimization results of disassembly seguence to worm wheel

Tab 7

图 9 涡轮减速器故障混合图模型

Fig.9 Fault-hybrid graph model for turbine reducer

Fig.11 Convergent curve to dismantle part 8

5 总

结

本文针对待拆卸对象普遍存在模糊性故障问

题,分析了产品故障特征对拆卸模型的模糊影响,提 出了考虑产品故障特征的目标选择性拆卸序列规划 方法.本文选择拆卸混合图模型来表达产品拆卸信 息;通过提取产品可能存在的故障,运用专家评价法 推导了零部件故障与拆卸模型元素的关联度矩阵, 并利用模糊函数计算零部件故障对拆卸模型元素的 影响度,以此修正拆卸模型元素和拆卸信息;在拆卸 混合图模型的基础上考虑零部件故障问题,构造了 故障拆卸混合图模型,并结合遗传算法生成了切合 实际的拆卸序列方案.所提方法较好地解决了产品 故障对拆卸造成的模糊影响,极大地提高了拆卸序 列在实际拆卸过程中的可行性和拆卸效率,有效降 低了拆卸的盲目性.

未来的研究中,需要进一步研究如何精确提取 和量化零部件故障;同时,还应进一步量化考虑对拆 卸收益、环境成本等指标的模糊影响.

参考文献

- [1] TANG Ying, ZHOU Mengchu, EYAL Z. Disassembly modeling, planning, and application [J]. Journal of Manufacturing Systems, 2002, 21(3):200
- [2] SRINIVASAN H, GADH R. A geometric algorithm for single selective disassembly using the wave propagation abstraction [J]. Computer Aided Design, 1998, 30(8): 603
- [3] 邢宇飞,王成恩,柳强.基于 Pareto 解集蚁群算法的拆卸序列规 划[J].机械工程学报,2012,48(09):186
 XING Yufei, WANG Chengen, LIU Qiang. Disassembly sequence planning based on pareto ant colony algorithm[J]. Journal of Mechanical Engineering, 2012, 48(09): 186
- [4] MOORE K E, GUNGOR A, GUPTA S M. Petri netapproach to disassembly process planning for products with complex AND/OR precedence relationships [J]. European Journal of Operational Research, 2001, 135(2): 428
- [5] TANG Ying, ZHOU Mengchu, GAO Meimei. Fuzzy-etri-net-based disassembly planning considering human factors[J]. IEEE Transactions on Systems, Man., and Cybernetics, Part A, 2006, 36(4): 718
- [6] WANG Hui, XIANG Dong, DUAN Guanghong. A genetic algorithm for product disassembly sequence planning [J]. Neuro-computing, 2008, 71(13/14/15):2720

- [7] REN Yaping, ZHANG Chaoyong, FU Zhao, et al. An asynchronous parallel disassembly planning based on genetic algorithm[J]. European Journal of Operational Research, 2018, 269(2):647
- [8] 徐进,张树有,费少梅.基于自适应粒子群的产品再制造拆卸规 划[J].浙江大学学报(工学版),2011,45(10):1746 XU Jin, ZHANG Shuyou, FEI Shaomei. Product remanufacture disassembly planning based on adaptive particle swarm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2011,45(10):1746
- [9] 宋守许,张文胜,张雷.基于改进人工蜂群算法的产品拆卸序列 规划[J].中国机械工程,2016,27(17):2384 SONG Shouxu, ZHANG Wensheng, ZHANG Lei. Product disassembly sequence planning based on improved artificial bee colony algorithm[J]. China Mechanical Engineering, 2016, 27(17):2384
- [10]章小红,李世其,王峻峰.基于蚁群算法的产品拆卸序列规划方法[J].计算机辅助设计与图形学学报,2007,19(03):387
 ZHANG Xiaohong, LI Shiqi, WANG Junfeng. Product disassembly sequence planning based on ant colony optimization[J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(03):387
- [11] WANG W, SHI X. Disassembly sequence planning based on poisoning antcolony algorithm [J]. Adv. Des. Manuf., 2014, 572 (1), 340
- [12] 焦庆龙,徐达,李闯.基于花朵授粉算法的产品拆卸序列规划
 [J].计算机集成制造系统,2016,22(12):2791
 JIAO Qinglong, XU Da, LI Chuang. Product disassembly sequence planning based on flower pollination algorithm[J]. Computer Inte-

(上接第159页)

[9] 王续林,顾群英,杨昌祥,等. 基于 PSO 聚类和 ELM 神经网络 机床主轴热误差建模[J]. 组合机床与自动化加工技术, 2015 (7):69. DOI:10.13462/j. cnki.Mmtamt.2015.07.019
WANG Xulin, GU Qunying, YANG Changxiang, et al. Modeling for machine tool thermal error based on PSO clustering algorithm and ELM model preprocessing neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(7):69. DOI:10. 13462/j.cnki.Mmtamt.2015.07.019

- [10] ZHANG Yi, YANG Jianguo, JIANG Hui. Machine tool thermal error modeling and prediction by grey neural network [J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9–12): 1065. DOI:10.1007/s00170-011-3564-3
- [11] 谭峰, 殷国富, 殷勤,等. 基于 GM-LS-SVM 层级模型的数控机 床热误差建模[J]. 中南大学学报(自然科学版), 2016, 47 (12):4028. DOI:10.11817/j.issn.1672-7207.2016.12.010 TAN Feng, YIN Guofu, YIN Qing, et al. CNC machine tool thermal error modeling based on GM-LS-SVM hierarchical model[J]. Journal of Zhongnan University, 2016, 47(12):4028. DOI: 10.11817/ j.issn.16727207.2016.12.010
- [12]阳红,向胜华,刘立新,等. 基于最优权系数组合建模的数控机 床热误差在线补偿[J]. 农业机械学报,2012,43(5):216. DOI: 10.6041/j.issn.1000-1298.2012.05.037

YANG Hong, XIANG Shenghua, LIU Lixin, et al. Online compensation for CNC machine thermal error based on optimal weights – based combined modeling[J]. Transaction of the Chinese Society for grated Manufacturing Systems, 2016, 22(12):2791

- [13] YOUSSIF M M, ALKADEEM R A, DARDIRY M A. Incorporating ergonomic factors in disassembly sequence planning[J]. Alexandria Engineering Journal, 2011, 50(3):213
- [14] 宋小文,潘兴兴,冯坤,等.面向零件不可拆的复杂产品拆卸序列 规划[J].计算机集成制造系统,2013,19(6):1249
 SONG Xiaowen, PAN Xingxing, FENG Kun, et al. Complex product disassembly sequence planning oriented to defective parts[J].
 Computer Integrated Manufacturing Systems, 2013, 19(6):1249
- [15] JEREMY L R, JAIME A C. Partial disassembly sequencing considering acquired end-of-life product age distributions [J]. International Journal of Production Research, 2014, 52(24): 7496
- [16] ZHAO Shuen, LI Yuling, FU Rui, et al. Fuzzy reasoning Petri nets and its application to disassembly sequence decision-making for the end-of-life product recycling and remanufacturing[J]. International Journal of Computer Integrated Manufacturing, 2014, 27(5): 415
- [17] TIAN G, ZHOU M, LI P. Disassembly sequence planning considering fuzzy component quality and varying operational cost[J]. Transactions on Automation Science and Engineering, 2018,15(2):748
- [18]陈弋文,陈伟达.基于收益概率的不确定环境下的产品拆卸序列 优化[J].计算机集成制造系统,2014,20(4):793
 CHEN Yiwen, CHEN Weida. Product disassembly sequence optimization based on profit-probability under uncertain environment[J].
 Computer Integrated Manufacturing Systems, 2014, 20(4):793

(编辑 王小唯)

Agricultural Machinery, 2012, 43(5):216. DOI:10.6041/j.issn. 10001298.2012.05.037

- [13]YANG Hong, NI Jun. Dynamic modeling for machine tool thermal error compensation [J]. Journal of Manufacturing Science & Engineering, 2003, 125(2):245. DOI:10.1115/1.1557296
- [14]姚焕新,牛鹏程,龚亚运,等.数控机床热误差补偿中分布滞后 模型的建立[J].农业机械学报,2013,44(3):246 YAO Huanxin, NIU Pengcheng, GONG Yayun, et al. Establishment of autoregressive distributed lag model in thermal error compensation of CNC machine tools[J]. Transaction of the Chinese Society for Agricultural Machinery, 2013, 44(3):246
- [15] 苗恩铭,刘义,董云飞,等.数控机床热误差时间序列模型预测 稳健性的提升[J].光学精密工程,2016,24(10):2480.DOI:10. 3788/ope.20162410.2480
 MIAO Enming, LIU Yi, DONG Yunfei, et al.Improvement of forcasting robustness of time series model for thermal error on CNC machine tool[J]. Optics and Precision Enginerring. 2016, 24(10): 2480. DOI:10.3788/ope.20162410.2480
- [16] VAPNIK V. The nature of statistical learning theory [C]// Conference on Artificial Intelligence. Springer-Verlag, 1995:988
- [17] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3); 293

(编辑 王小唯)