DOI:10.11918/201903178

3A 分子筛和 Al₂O₃ 复合载体催化剂的催化特性

王凤君1,王明昊2,高 翔1,梁 财3,王延涛3,王 辉4

(1.浙江大学能源工程学院,杭州 310027;2.高效清洁燃煤电站锅炉国家重点实验室(哈尔滨锅炉厂有限责任公司),

哈尔滨 150046; 3.能源热转换及其过程测控教育部重点实验室(东南大学),南京 210096;

4.哈尔滨工业大学 燃烧工程研究所,哈尔滨 150001)

摘 要:为探究 3A 分子筛和 Al₂O₃复合载体催化剂的结构特征以及对甲苯的催化特性,采用等体积浸渍法制备 Al₂O₃与 3A 分子筛不同掺混比的载体镍基催化剂,并对催化剂进行 XRD、H₂-TPR、BET 等特性分析,在固定床反应器中对催化剂催化甲苯 的特性进行研究.结果表明:催化剂中活性组分 Ni 主要以氧化镍 NiO 和镍铁合金 Ni₃Fe 的形式存在;Al₂O₃催化剂的比表面积 和孔容随着 Fe 负载量的增加而减小,而不同掺混比催化剂的比表面积和孔容随着 γ -Al₂O₃占比的增加而逐渐增大;甲苯的转 化率随着反应温度的增加而逐渐增加,但是随着 Fe 负载量的增加而无增加后下降;对于不同掺混比的催化剂,随着 γ -Al₂O₃占比的增加,催化剂的活性逐渐增强而后减弱,甲苯的转化率因此先增大后减小;当反应温度为 700 ℃,水碳比为 2,停留时间 0.6 s, γ -Al₂O₃占比为 60%时,甲苯转化率最高.

关键词:催化剂;3A 分子筛;Al₂O₃;掺混比;固定床;载体;催化 **中图分类号:** 0643;TK09 **文献标志码:** A **文章编号:** 0367-6234(2020)01-0056-06

Catalytic performance of 3A molecular sieve and Al₂O₃ mixed carriers catalyst

WANG Fengjun¹, WANG Minghao², GAO Xiang¹, LIANG Cai³, WANG Yantao³, WANG Hui⁴

(1.College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; 2.State Key Laboratory of Efficient and Clean Coal-Fired Utility Boilers (Harbin Boiler Company Limited), Harbin 150046, China; 3.Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education (Southeast University), Nanjing 210096, China; 4.Combustion Engineering Research Institute, Harbin Institute of Technology, Harbin 150001, China)

Abstract: To research the structural characteristics of 3A molecular sieve and Al_2O_3 mixed carrier catalyst and the catalytic characteristics of catalyst for toluene, a series of nickel-based catalysts were prepared by equal volume impregnation, and γ -Al₂O₃ and 3A molecular sieve were mixed as carriers. The catalysts were characterized using XRD, H₂-TPR and BET, and the catalytic performance of nickel catalyst for toluene was investigated in a fixed-bed reactor. The results indicated that the active species Ni mainly exists as NiO and Ni₃Fe iron-nickel alloy in the catalysts. The specific surface area and pore volume of catalysts went down for the Al₂O₃ catalysts, and then the toluene conversion rose with the increase of temperature, while the conversion rate of toluene increased firstly and then decreased as the load amount of Fe increased. For the mixing catalysts, the specific surface area and pore volume of catalysts and the conversion of toluene increased firstly and then decreased with the increase of γ -Al₂O₃ proportion. It has the highest toluene conversion rate, when the reaction temperature is at 700 °C, the water/carbon ratio is 2, and the residence time is 0.6 s, at same time the mixing ratio of γ -Al₂O₃ is 60%.

Keywords: catalysts; 3A molecular; Al2O3; mixing ratio; fix-bed; carrier; catalysis

随着当今城市社会的发展,污泥产量逐年攀升^[1].污泥气化技术作为一种新兴的污泥处理技术,能够较好的实现污泥处理"无害化、减量化、资

收稿日期: 2019-03-25

作者简介: 王凤君(1972—),男,博士研究生; 高 翔(1968—),男,教授,博士生导

- 高 翔(1968—),男,教授,博士生导师; 梁 财(1980—),男,副教授,博士生导师
- 梁 财(1980—),男,副教授,博士生导师; 王 辉(1977—),男,教授,博士生导师
- 」 「F(19/1一), カ, 叙収, 岡工生 通信作者: 梁 财, liangc@ seu.edu.cn

源化"的目标,被认为比污泥焚烧更加经济和清 洁^[2].然而,现有的污泥气化工艺存在的主要问题 是大量焦油的产生,焦油成分复杂,焦油的存在降低 了污泥气化效率,还有可能与灰尘黏合堵塞管道^[3]. 因此,减少污泥气化的焦油含量,提高污泥能量利用 率,保证气化工艺的稳定运行具有重要意义.

焦油催化裂解是目前较为先进且有效的焦油脱 除方法,不仅能实现焦油的转化,还能改善产气品 质^[4]. Sekine 等^[5] 研究了 3 种不同材料(Al, O₃、 LaAlO₃、LaSrAlO₃₋₈)为载体的镍基催化剂对焦油催 化转化的影响. 当将 La 和 Sr 两种金属加入到载体 中时,其能够与载体有相互作用,减少积碳生成,提 高氢气的选择性. 卢雯等^[6]研究了 MgO、HZSM-50、 TiO₂、SiO₂、γ-Al₂O₃等5种镍基催化剂对甲苯重整特 性的影响,研究表明 Ni 物种能与部分载体之间相互 作用,且载体酸性也对催化剂的稳定性有较大影响. 张艳敏等^[7]考察了 HZSM-50(不同硅铝比)、USY、 Al₂O₂载体催化剂对甲苯和芘混合溶液催化裂解的 影响,结果表明 Ni/HZSM-5(w(Si/Al) = 25)催化 剂的酸性中心数量最多,对甲苯和芘的裂解能力最 强. Breen 等^[8]研究了4种金属负载 Rh、Pd、Pt 和 Ni 在 γ-Al,O₃和 CeO₂-ZrO₂上对乙醇催化重整,研究表 明在同等条件下 CeO,-ZrO,催化剂比γ-Al,O,有更高 的活性, Rh 和 Pt 活性金属也显示了比 Pd 和 Ni 更 好的催化性能. 李雪玲等^[9]制备了 NiO/MgxSi1-xOy 二元复合载体催化剂,在催化甲苯和萘的混合物作 为焦油模化物时,发现负载 10%的 NiO/Mg0.8Si0.2 催化剂有较好的催化特性、稳定性和抗积碳特性,其 中 Mg 和 Si 的原子比对反应活性有很大的影响. Kong 等^[10]研究了不同载体对镍基催化剂催化甲苯 的特性,发现 Ni 会与载体之间相互作用,其中 MgO 载体会与 Ni 形成固溶体, Ni 颗粒的尺寸减小,分散 度提高,催化活性较好. Ashok 等[11]有同样的发现, Ni 负载在 Fe₂O₃-Al₂O₃双载体上,催化甲苯时显示 较高的活性和稳定性,且积碳率明显降低,被认为是 形成了镍铁合金,改变了催化剂的物质结构,从而改 善了催化剂的性能. 研究发现铁 Fe 与镍 Ni 双金属 共同负载到载体上也会形成镍铁合金,改善催化剂 的性能. Liu^[12]在镍基催化剂中添加不同种类的助 剂,结果表明助剂添加后催化剂的活性提高,其中添 加助剂 Fe 的催化剂的比表面积最能提高焦油的转 化率,且H,的产率有所提高,抗积碳能力提高.虽然 目前对载体催化剂已有较多研究,但是对不同掺混 比下的载体催化剂对焦油的催化特性研究较少.

本文选择两种载体材料以不同质量比进行掺 混,考察混合载体催化剂的结构特性,并对不同掺混 比载体催化剂的稳定性进行研究,获得载体催化剂 结构与催化剂催化性能之间的关系.以甲苯为焦油 模型化合物,通过制备 γ-Al₂O₃和 3A 分子筛混合载 体铁镍催化剂,分析对甲苯催化特性的影响,并对催 化剂进行程序升温还原(H₂-TPR)、N₂吸附-脱附和 X 射线衍射(XRD)表征,分析催化剂的结构特征, 探讨对催化剂活性和稳定性的影响规律.

1 实验

1.1 催化剂的制备

催化剂载体为 γ-Al₂O₃和 3A 分子筛以及两种 材料不同比例(质量比)的混合体,采用等体积浸渍 法制成 Ni 质量负载量为 6%的镍铁催化剂.具体制 法为:根据 Ni 和 Fe 的负载量将称量好的硝酸镍 (Ni(NO₃)₂·6H₂O)和硝酸铁(Fe(NO₃)₃·9H₂O) 溶于去离子水中,搅拌形成溶液,在 40 ℃水浴条件 下分别将一定量的 γ-Al₂O₃和 3A 分子筛以及两种 材料的混合载体缓慢加入溶液中,搅拌混合均匀. 在水浴 40 ℃温度下静置 12 h,在 110 ℃的干燥箱内 干燥 6 h,然后放置马弗炉中于 500 ℃下空气煅烧 2 h,制得的催化剂分别标记为 6Ni - *a*Fe/Al₂O₃ 以 及 Al₂O₃(X)/3A(Y),*a* 为助剂 Fe 的百分含量, *X*、*Y* 分别为 Al₂O₃、3A 分子筛所占整个载体质量的百 分比.

1.2 催化剂表征

催化剂的晶相结构可由 D/Max 2500VL/PC 型 X 射线衍射仪进行测定,管电压为 40 kV,管电流为 100 mA,扫描角度在 5°~90°,扫描步长 0.02°.催化 剂的比表面积可通过 ASAP2020M 全自动氮吸附仪 进行 N₂吸附-脱附测试计算测得.催化剂样品在进 行吸附-脱附测试前需在 120 ℃条件下干燥排气处 理 2 h. 催化剂的还原性可通过在多功能吸附仪进 行 H₂-程序升温测定.

1.3 实验装置与方法

焦油为混合物,其组成成分复杂,分析较为困 难,国内外众多研究者通常采用焦油中的一种或多 种组分作为模化物进行研究,而且甲苯是污泥气化 焦油中的主要组成成分,因此选用甲苯作为焦油的 模化物. 本实验的装置流程图如图 1 所示. 两台微 型蠕动泵将反应物料甲苯和去离子水泵入到反应器 中. 甲苯流量固定为 0.1 mL/min, 通过水碳比的变 化对去离子水的流量进行调节. 甲苯和去离子水在 进入反应器之前需要加热汽化.反应器中段设置一 层不锈钢钢丝网支撑粒径为 0.250~0.425 mm 的催 化剂,并通过控温装置对反应温度进行设定.反应 产生的气体经过一段保温管道进入冰浴冷却槽,经 过冷却干燥后的产气通过在线气体分析仪进行气体 成分分析.将气体产物中的CO、CO,和CH₄的所含C 的摩尔数与反应物料所含 C 的摩尔数的比值定义 为甲苯的转化率 X_{con}^[13]. 计算公式如下所示:

$$X_{\rm con}(\%) = \frac{V \cdot (a_{\rm CH_4} + a_{\rm CO} + a_{\rm CO_2})/22\,400}{7Q_{\rm C_{7H_8}}/M_{\rm C_{7H_8}}} \times 100\%$$

式中: $Q_{C_7H_8}$ 为甲苯的质量流量,g/min; a_{CO_2} 、 a_{CO} 、 a_{CH_4}

分别为 CO₂、CO、CH₄的体积分数,%; V 为产气速率, mL/min; $M_{C_7H_8}$ 为甲苯的相对分子质量.

1一氮气瓶;2一氢气瓶;3一甲本;4一 @型ss动泵;5一笔记本;
 6一去离子水;7一质量流量计;8一干燥器;9一冷却槽;
 10一温控仪;11一固定床反应器;12一转子流量计
 图 1 焦油模型化合物催化裂解装置流程图

Fig.1 Setup flow of tar model compound for catalytic cracking

2 实验结果与讨论

2.1 Al₂O₃载体催化剂对甲苯催化裂解的影响

2.1.1 Al₂O₃载体催化剂表征结果分析

图 2 为以 Al₂O₃为载体的铁镍催化剂的 XRD 图 谱,不同的铁含量催化剂的晶体结构存在差异.如 图 2 所示,催化剂载体 Al₂O₃的衍射峰的位置在 2θ = 66.0°处较为强烈,但衍射峰强度随着铁含量的 增加逐渐减弱. 在催化剂的 XRD 图谱可以看到单质 Ni 和合金 Ni₃Fe 的衍射峰,表明活性组分 Ni 的大量 存在,并且 Ni 会和助剂 Fe 相互作用,生成了铁镍合 金^[14]. 合金 Ni₃Fe 的衍射峰随着 Fe 含量的增加呈 现先增强后减弱的变化趋势,这表示 Fe 含量在一定 范围内增加能够促进镍铁合金的生成,但是 Fe 含量 过高反而抑制镍铁合金的生成. 当 Fe 质量分数为 3%时,镍铁合金衍射峰强度最大,表明其生成量最 多. 另外镍铝尖晶石 NiAl,O4 衍射峰的出现说明活 性组分 Ni 与载体 Al₂O₃存在相互作用,只是生成量 较少,衍射峰强度较弱. 6Nil1Fe/Al,O,催化剂的 XRD 图谱出现了氧化铁(Fe₂O₃)衍射峰,可能是 Fe 负载过量,有大量氧化铁生成[15].

图 3 为以 Al₂O₃为载体的催化剂孔径分布图. 由图 3 可知,催化剂的孔径大多分布在 10 nm 以下, 表明催化剂的孔径为均匀的介孔结构.表1为催化剂 的比表面积、孔容和平均孔径.由表1 可知,助剂 Fe 负载量的增加使催化剂的比表面积、孔容和平均孔径 均呈下降趋势.这可能是因为过量 Fe 覆盖在催化剂 表面,并进入催化剂孔道中,在一定程度上造成孔道 堵塞,因此导致催化剂的比表面积和孔容下降.

(a)-6Ni/Al₂O₃; (b)-6Ni1Fe/Al₂O₃; (c)-6Ni3Fe/Al₂O₃; (d)-6Ni6Fe/Al₂O₃; (e)-6Ni11Fe/Al₂O₃

图 2 Al,O₃载体催化剂的 XRD 图谱

Fig.2 XRD of the catalyst with Al₂O₃ as the carrier

他在刘	比表面积/	孔容/	亚构引经7
催化剂	$(m^2\boldsymbol{\cdot}g^{-1})$	$(\mathrm{cm}^3\boldsymbol{\cdot}\mathrm{g}^{-1})$	十均11年/nm
6Ni/Al ₂ O ₃	161.03	0.455	11.308
$6\mathrm{Ni}1\mathrm{Fe}/\mathrm{Al}_2\mathrm{O}_3$	156.08	0.431	11.411
$6\rm Ni3Fe/Al_2O_3$	151.08	0.407	11.372
$6\mathrm{Ni}6\mathrm{Fe}/\mathrm{Al}_2\mathrm{O}_3$	145.01	0.385	9.872
6Ni11Fe/Al ₂ O ₃	143.61	0.361	9.914

2.1.2 反应温度和 Fe 负载量对甲苯催化裂解的影响

图 4 为以 Al₂O₃为载体的镍铁催化剂对甲苯催 化转化的影响.反应条件为停留时间 0.6 s,水碳比 为 2. 从图 4 可以看出,在反应温度 550~750 ℃,甲 苯的转化率随着温度的增加也逐渐增加.但是 700 ℃之后,甲苯的转化曲线变得平缓,说明甲苯转 化率增长速度变缓.另一方面,Fe 负载量的增加能 够促进甲苯的转化,但当 Fe 负载量过多时,甲苯转 化率反而会下降.当 Fe 负载量为 3%时,甲苯的转 化率最高,随着 Fe 负载量增加到 6%和 11%时,甲 苯转化率下降明显.镍基催化剂催化甲苯主要是依 靠活性组分 Ni 活化甲苯的 C—C 和 C—H 键,使其 更容易断裂,从而形成小分子基团,各个基团之间互 相聚合反应或与水分子反应,生成 CO、H₂等小分子 气体^[16].添加助剂 Fe,助剂 Fe 与活性组分 Ni 相互 作用,生成镍铁合金,催化剂的活性提高.这可能是 因为催化剂的镍铁合金中铁容易被氧化,能够为催 化甲苯的反应提供更多的氧,促进甲苯的催化转化, 同时促进催化剂表面积碳的氧化反应,减少碳的生 成,提高了抗积碳能力,从而改善了催化剂性能^[17]. 但是 Fe 负载量过高时,可能会堵塞催化剂孔道,造 成催化剂活性下降,从而甲苯的转化率降低^[18].

Fig.4 Effect of reaction temperature and Fe load on toluene conversion

2.2 不同掺比载体催化剂的催化特性分析

2.2.1 不同掺比载体催化剂的表征结果

图 5 为 3A 分子筛和 Al₂O₃复合载体催化剂的 XRD 图谱. 3A 分子筛和 Al₂O₃作为催化剂的载体, 其衍射峰在图谱上有所显示. 但是随着 3A 分子筛 占比的增加, Al₂O₃的衍射峰强度逐渐减弱, 3A 分子 筛的衍射峰强度逐渐增加. 另外在 XRD 图谱上存在 单质 Ni 和合金 Ni₃Fe 的特征衍射峰,表明催化剂制 备过程中活性组分 Ni 与助剂 Fe 之间相互作用生成 了镍铁合金^[19],且 Ni 和合金 Ni₃Fe 的衍射峰出现在 同一位置. 单质 Ni 和合金 Ni₃Fe 特征衍射峰高度随 着 Al₂O₃质量分数的增加逐渐升高,表明两种物质 的生成量也在增加. 镍铝尖晶石 NiAl₂O₄的衍射峰 在 XRD 图谱上有所显示,说明有镍铝尖晶石存在, 只是其含量较少,特征衍射峰并不明显^[17].

Fig.5 XRD of catalysts with different mixing ratios

图 6 为 3A 分子筛和 Al₂O₃复合载体不同掺比 制备的镍铁催化剂的 H,-TPR 谱图. 镍铁催化剂一 般存在3种还原峰^[20]:第1种峰出现的温度为350~ 500 ℃,表示的是 NiO 的还原;第2种峰出现的温度 为 500~750 ℃,代表与氧化铁相互作用的 NiO 的还 原:第3种峰出现在750℃以后,还原难度较大,是 镍铝尖晶石 NiAl, O, 中 Ni 的还原. 从图 6 可看出, 还 原峰主要出现在 450~650 ℃,表明催化剂中存在较 多的镍铁合金,而镍铝尖晶石 NiAl,O,无突出峰,说 明其含量较少,这与 XRD 图谱一致. 还原峰的面积 代表还原所消耗的 H。量,还原峰的面积越大耗氢量 越大,说明 Ni 与助剂以及载体之间的相互作用越 强,不易被还原^[21].还原峰的峰宽随着 Al₂O₃质量分 数的增加逐渐增大,还原峰高度也相应增加,当 Al₂O₃质量分数超过80%时,TPR曲线图趋于平滑, 还原峰有消失的趋势,这表明还原耗氢量先增加后 减少,Ni与助剂以及载体之间的相互作用也由强变 弱. 在 400℃以下的低温区域, Al₂O₃(80)/3A(20) 催化剂的 TPR 图显示有一还原峰,可能是 NiO 或 Fe₂O₃未与催化剂载体相互反应而被还原的结果.

 $\begin{array}{l} (a) & -Al_2O_3(0)/3A(100) \ ; (b) -Al_2O_3(20)/3A(80) \ ; \\ (c) & -Al_2O_3(40)/3A(60) \ ; (d) -Al_2O_3(60)/3A(40) \ ; \\ (e) & -Al_2O_3(80)/3A(20) \ ; (f) -Al_2O_3(100)/3A(0) \end{array}$

图 6 复合载体催化剂的 H₂-TPR 曲线

Fig.6 H_2 -TPR of catalysts with different mixing ratios

图 7 为复合载体催化剂的孔径分布图. 由图 7 的孔径分布曲线可知,催化剂的孔径集中在 2~35 nm,表明催化剂孔道为介孔结构^[22].,催化剂孔径分布曲线图的峰宽随着 Al₂O₃质量分数的增加而相应增大,表明催化剂的孔径有向大孔径方向移动的趋势,催化剂介孔的有序度下降.表 2 为复合载体催化剂的各项结构参数. 由表 2 可知,随着Al₂O₃占比的增大,催化剂的比表面积和孔容也在增加^[23],这可能是由于 Al₂O₃的比表面积和孔容等结构参数相对较大,而 3A 分子筛的比表面积和孔容较小,当复合载体催化剂中 Al₂O₃的占比增加时,催化剂的物理性质就越接近 Al₂O₃.

图 7 不同掺比载体催化剂的孔径分布

Fig.7 Pore size distribution of catalyst with different mixing ratios

表 2 不同掺比催化剂的结构参数

Tab.2 Structural parameters of catalysts with different mixing ratios

催化剂	比表面积/ (m ² ・g ⁻¹)	孔容/ (cm ³ ・g ⁻¹)	平均孔径/ nm
$Al_2O_3(0)/3A(100)$	34.57	0.088	10.173
$Al_2O_3(20)/3A(80)$	67.45	0.160	9.495
$Al_2O_3(40)/3A(60)$	92.33	0.211	9.140
$Al_2O_3(60)/3A(40)$	109.73	0.253	9.239
$Al_2O_3(80)/3A(20)$	128.47	0.291	9.046
$Al_2O_3(100)/3A(0)$	151.08	0.407	11.372

2.2.2 催化剂的催化特性

图 8 为反应温度 700 ℃,水碳比保持为 2,停留 时间 0.6 s 时, Al, O3和 3A 分子筛复合载体催化剂对 甲苯催化转化的影响. 由图 8 可知,甲苯的转化率 随着 Al₂O₃质量分数的增加呈现先增加后降低的变 化趋势. 当 Al₂O₃的质量分数达到 60%时,甲苯的转 化率是图中催化剂对甲苯的催化转化率最高的.反 应时间在 30 min 内.甲苯的转化率一直保持较高水 平. 虽然甲苯的转化率随反应时间的增加有一定的 下降,但是下降趋势并不明显,显示出良好的催化活 性和稳定性.反应时间继续增加,甲苯的转化率仍 保持较高水平. 但是 Al,O,的占比继续增加,甲苯的 转化率并没有增加,反而有一定程度的下降.且随 着反应的进行,下降趋势越来越明显,稳定性较差. 当 Al₂O₃质量分数为 80%时,在反应初期(30 min), 催化剂对甲苯的催化转化率低于质量分数为 60% 的 Al₂O₃催化剂对甲苯的转化. 当反应进行到 4 h 以 后时,催化剂对甲苯的转化率由反应初期的98%下 降到了85%,转化率明显下降,表明此时的催化剂 活性降低较多. 3A 分子筛对水分子有较强的吸附性 能,对于有水参与的催化反应,能够吸附较多的水分 子参与反应. 另外, 3A 分子筛骨架结构特殊, 作为载 体同样能够提高助剂的稳定性[27].从图中可以看 出,添加 3A 分子筛后,催化剂催化甲苯的转化率有

所提升,当3A分子筛的质量分数为40%,甲苯有较高的转化率.

Fig.8 Effects of carrier catalysts with different mixing ratios on toluene conversion

镍基催化剂的活性和稳定性与催化剂本身的性质有关.由上述 XRD 和 TPR 综合分析可知, Al₂O₃占比较小时,生成的镍铁合金较少, Ni 物种主要以还原度较高的 NiO 形式存在,这时的催化剂活性和抗烧结能力都比较差;而随着 Al₂O₃占比增加,镍铁合金和镍铝尖晶石的生成量较多, Ni 物种还原度比较低.一般认为还原度低的 Ni 物种分散度较高且还原后单质镍Ni 晶粒较小,从而有较高的活性和稳定性^[25].

3 结 论

1)负载镍和助剂 Fe 的催化剂中,Ni 物种可能 有氧化镍、镍铁合金和镍铝尖晶石 3 种存在形式,其 中氧化镍和镍铁合金含量最多.对于 Al₂O₃载体催 化剂,随着助剂 Fe 含量的增加,氧化铁 Fe₂O₃的衍 射强度增强,而 Al₂O₃的衍射峰越来越弱,且催化剂 的比表面积和孔容也在逐渐减小.

2)反应温度和 Fe 负载量对甲苯转化率有较大 影响.随着温度的增加,甲苯转化率逐渐上升,但是 上升速率却越来越小.甲苯转化率随着 Fe 负载量 的增加呈现先上升后下降的趋势^[23],当 Fe 负载量 为 3%时甲苯转化率最大.

3) 对于不同掺混比载体镍基催化剂,随着Al₂O₃ 占比的增加,Ni与助剂以及载体之间的相互作用由 强变弱.催化剂的比表面积和孔容随着 Al₂O₃占比 的增加持续增大.甲苯转化率随着 Al₂O₃占比的增 加呈现先上升后下降的趋势,当反应温度为700 ℃, 水碳比为 2 且停留时间 0.6 s, Al₂O₃质量分数为 60%时,甲苯转化率有最大值.

参考文献

 张辉,胡勤海,吴祖成,等.城市污泥能源化利用研究进展[J]. 化工进展,2013(5):1145
 ZHANG Hui, HU Qinhai, WU Zucheng, et al. An overview on utilization of municipal sludge as energy resources [J]. Chemical Industry and Engineering Progress, 2013(5): 1145.DOI:10.3969/j. issn.1000-6613.2013.05.031

[2] 张立峰. 剩余活性污泥的热化学处理技术[J]. 化工环保, 2003, 23(3):146

ZHANG Lifeng. Thermochemical processes for treating residual activated sludge [J]. Environmental Protection of Chemical Industry, 2003,23 (3):146.DOI:10.3969/j.issn.1006-1878.2003.03.006

- [3] JUAN M D A, ADOLFO N, MARIA E R. Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge[J]. Fuel, 2011, 90(2): 521. DOI:10.1016/j.fuel. 2010.09.043
- [4] 杨修春, 韦亚南, 李伟捷. 焦油裂解用催化剂的研究进展[J]. 化工进展, 2007, 26(3): 326
 YANG Xiuchun, WEI Yanan, LI Weijie. Research progress of catalysts for tar cracking[J]. Chemical Industry and Engineering Progress, 2007, 26(3): 326 DOI: 10.3321/j.issn:1000-6613.2007. 03.006
- [5] SEKINE Y, MUKAI D, MURAI Y, et al. Steam reforming of toluene over perovskite-supported Ni catalysts[J]. Applied Catalysis A General, 2013, 451(2): 1607. DOI: 10.1016/j.apcata.2012.11.005
- [6] 卢雯, 孔猛, 杨琦, 等. 载体对镍基催化剂及其甲苯水蒸气重整 性能的影响[J]. 化学反应工程与工艺, 2012, 28(3): 238
 LU Wen, KONG Meng, YANG Qi, et al. Influence of support on catalytic behavior of Ni-based catalysts in steam reforming of toluene
 [J]. Chemical Reaction Engineering and Technology, 2012, 28 (3): 242
- [7] 张艳敏. 催化剂结构与焦油模型化合物裂解行为的关联性[J]. 化工进展, 2018, 37(4): 1451

ZHANG Yanmin. On the relation between the structure of catalysts and the cracking behavior of tar model compound [J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1451. DOI: 10. 16085/j.issn.1000-6613.2017-1123

- [8] BREEN J P, BURCH R, COLEMAN H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J]. Applied Catalysis B: Environmental, 2002, 39(1):65. DOI:10.1016/S0926-3373(02)00075-9
- [9] 李雪玲,岳宝华,汪学广,等.NiO/MgxSi1-xOy 催化剂的制备 及其在高温焦炉煤气中焦油组分催化裂解中的应用[J].物理化 学学报,2009,25(4):762

LI Xueling, YUE Baohua, WANG Xueguang, et al. Preparation of NiO/MgxSi1-xOy catalysts and their application in catalytic cracking of tar components in hot coke oven gas [J]. Acta Physico-Chimica Sinica, 2009, 25(4): 762. DOI:10.3866/PKU.WHXB200904231

- [10] KONG Meng, FEI Jinhua, WANG Shuai, et al. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification
 [J]. Bioresource Technology, 2011, 102 (2): 2004. DOI: 10. 1016/j.biortech.2010.09.054
- [11] ASHOK J, KAWI S. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound [J].
 ACS Catalysis, 2014, 4(1): 289. DOI:10.1021/cs400621p
- [12] LIU Haibo, LIU Tianhu, CHEN Xianlong, et al. Effect of additives on catalytic cracking of biomass gasification tar over a nickel-based catalyst[J]. Chinese Journal of Catalysis, 2010, 31(4): 409. DOI: 10.1016/S1872-2067(09)60061-9
- [13]刘雪景. 活性炭负载镍催化剂的制备及催化甲苯水蒸气重整研究[D]. 徐州:中国矿业大学, 2016

LIU Xuejing. Preparation of activated carbon supported nickel cata-

lysts and its application in catalytic steam reforming of toluene[D]. Xuzhou: China University of Mining and Technology, 2016. DOI: CNKI:CDMD:2.1016.910178

- [14] LI D. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar [J].Chem Sus Chem, 2014,7(2):510.DOI:10.1002/cssc.201300855
- [15] THEOFANIDIS S A, GALVITA V V, POELMAN H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe[J]. ACS Catalysis, 2015(5): 3028. DOI: 10.1021/acscatal.5b00357
- [16] KOIKE M, ISHIKAWA C, LI Dalin, et al. Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas [J]. Fuel, 2013, 103: 122. DOI:10.1016/j.fuel.2011.04.009
- [17]何立模,胡松,汪一,等.改性镍基催化剂催化甲苯重整与积碳特性研究[J].工程热物理学报,2016,37(5):1093
 HE Limo, HU Song, WANG Yi, et al. Catalytic performance and coke characterization over modified Ni-based catalysts for steam reforming of toluene [J]. Journal of Engineering Thermophysics, 2016, 37(5):1093
- [18] HU Song, HE Limo, WANG Yi, et al. Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe-Ni/Al₂O₃ catalysts [J]. International Journal of Hydrogen Energy, 2016, 41(40); 17967. DOI: 10.1016/j.ijhydene.2016.07.271
- [19]张玉红,熊国兴,盛世善,等. NiO/γ-A1₂O₃催化剂中 NiO 与 γ-A1₂O₃间的相互作用[J].物理化学学报,1999,15(8):735
 ZHANG Yuhong, XIONG Guoxing, SHENG Shishan, et al. Interaction of NiO with γ-A1₂O₃ supporter of NiO/γ-A1₂O₃ catalysts[J]. Acta Physico-Chimica Sinica, 1999, 15(8):735. DOI:10.3866/ PKU.WHXB19990813
- [20] MAZUMDER J, LASA H I D. Ni catalysts for steam gasification of biomass: effect of La₂O₃ loading [J]. Catalysis Today, 2014, 237 (7):100.DOI:10.1016/j.cattod.2014.02.015
- [21] ASHOKJ, KAWI S. Steam reforming of toluene as a biomass tar model compoundover CeO₂ promoted Ni/CaO-Al₂O₃ catalytic systems [J]. International Journal of Hydrogen Energy, 2013, 38 (32): 13938
- [22]余浩. 镍系催化剂催化甲苯水蒸气重整的研究[D]. 北京:北京 化工大学, 2016

YU Hao. Study on steam reforming of toluene by Ni based catalyst [D]. Beijing: Beijing University of Chemical Technology, 2016

[23]王延涛. 污泥气化焦油催化裂解实验研究[D]. 南京: 东南大 学, 2018

WANG Yantao. Study on catalytic cracking of tar from sewage sludge gasification[D]. Nanjing: Southeast University, 2018

- [24]张琪, 汪根宝, 李蒙, 等. 基于 3A 分子筛和 TiO₂载体的钙基碳载体对污泥气化的影响[J]. 化工进展, 2017, 36(10):3697
 ZHANG Qi, WANG Genbao, LI Meng, et al. Effects of 3A molecular sieve and TiO₂ supported CaO on the gasification of sewage sludge[J]. Chemical Industry and Engineering Progress, 2017, 36 (10):3697.DOI:10.16085/j.issn.1000-6613.2017-0238
- [25]王延涛,梁财,周群,等.凹凸棒石镍基催化剂对污泥气化焦 油催化裂解的特性分析 [J].化工进展,2018,37(10):3895
 WANG Yantao, LIANG Cai, ZHOU Qun, et al. Analysis of catalytic cracking of sludge gasification tar over palygorskite nickel-based catalyst [J]. Chemical Industry and Engineering Progress,2018,37 (10):3895.DOI:10.16085/j.issn.1000-6613.2017-2416