DOI:10.11918/202101109

多臂协作式小天体附着取样机器人机械系统

赵志军1,全齐全2,潘博1,危清清1,赵京东2

(1.空间智能机器人系统技术与应用北京市重点实验室(北京空间飞行器总体设计部),北京 100092;2.机器人技术与系统国家重点实验室(哈尔滨工业大学),哈尔滨 150001)

摘 要:为解决探测器在弱引力、特性未知小天体表面的附着取样难题,提出一种融合着陆缓冲、附着固定、取样、放样等核心 功能为一体的附着取样一体化机器人设计方案。基于腿臂复用,提出多臂协作主动自适应式着陆缓冲方案;利用超声波钻钻 压力小、硬质岩石表面钻进效率高的特点,提出针对岩石类小天体的超声波钻式附着固定方案;针对星表特性不确定,取样适 应性要求高的需求,提出砂轮磨削、毛刷清扫的双模式取样方案。采用仿真方法对着陆缓冲性能、取样性能等进行分析;在原 理样机研制基础上,开展附着取样全流程实验。结果表明,附着取样机器人可实现着陆缓冲、附着固定、取样、放样等功能,验 证了该系统的核心功能。本研究旨在探索小天体附着取样方法,为小天体取样返回任务提供技术支持。

关键词:小天体;附着;取样;主动缓冲;多臂协作

中图分类号: V423.6 文献标志码: A 文章编号: 0367-6234(2022)01-0001-08

A multi-arm collaborating robot mechanical system for the small body anchoring and sampling

ZHAO Zhijun¹, QUAN Qiquan², PAN Bo¹, WEI Qingqing¹, ZHAO Jingdong²

(1. Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications(Beijing Institute of Spacecraft System Engineering), Beijing 100092, China; 2. State Key Laboratory of Robotics and System (Harbin Institute of Technology), Harbin 150001, China)

Abstract: To solve the problems of the spacecraft anchoring and sampling on the surface of small bodies which are micro-gravity and unknown characteristics, an integrated robot design scheme for anchoring and sampling is proposed. It fusions functions such as buffering, anchoring, sampling, and sample transferring as a whole. Based on the idea of reusing leg and arm, a multi-arm collaborating scheme having active and self-adaptive land buffering is proposed; Taking advantages of the ultrasonic drill with low drilling pressure and high drilling efficiency on the hard rock, an anchoring scheme using ultrasonic drill for the rocky small body is proposed; In response to the uncertain characteristics of the small body and high sampling adaptability, a dual-mode sampling scheme including grinding and brushing is proposed. Buffering and sampling performances are simulated. Prototype is developed and the whole process test of anchoring and sampling is carried out, and the core functions of the robot mechanical system are verified.

Keywords: small body; anchoring; sampling; active buffering; multi-arm collaborating

小天体(包括小天体、彗星)内部蕴含了太阳系 起源和生命起源的信息,含有丰富的矿物质,具有极 高的科学和经济价值^[1-2]。根据国际上已进行的典 型探测活动,小天体探测方式可分为环绕探测、着陆 原位探测、取样返回探测 3 类。环绕探测的典型代 表为美国的 Near^[3]、Deep Space 1^[4]、Stardust^[5]、新 视野 New Horizons^[6]、Dawn^[7]、中国的 CE-2^[8]等,

通信作者:危清清,weiqingqing51@sina.com

环绕探测是 20 世纪末 21 世纪初主要的探测方式, 取得了大量的科研成果。21 世纪初着陆原位探测 兴起,典型代表为欧空局的 Rosetta^[9]、美国的 Deep Impact。随着科技的进步,探测方式逐渐转变为取 样返回,如日本的 Hayabusa 1^[10]、Hayabusa 2^[11-12]、 美国的 Osiris-Rex^[13-14]、欧空局的 MarcoPolo-R^[15]。 环绕探测通过遥感等方式对小天体特性进行预测, 无法获得小天体样品,具有较大的局限性;着陆原位 探测可对小天体组分进行原位分析,但是局限于探 测器所携带设备的能力及种类,不能全面地开展小 天体特性研究;取样返回将小天体样品带回地球进 行深入研究,克服了上述两种探测方式的缺点,具有 较大优势,是目前主流的探测方式。

收稿日期: 2021-01-25

基金项目:国家自然科学基金(51975139,U2037602); 机器人技术与系统国家重点实验室开放研究项目 (SKLRS-2021-KF-14) 作者简介:赵志军(1983—),男,博士,高级工程师; 全齐全(1983—),男,教授,博士生导师; 赵京东(1978—),男,教授,博士生导师

第54卷

小天体表面存在弱引力、不规则、介质特性未知 等特性,使得探测器附着时易反弹、侧翻,取样时易 出现取样器介质适应差而不能取样的情况,造成取 样返回难度极大。Rosetta 的 Philae 探测器在彗星 表面着陆时就发生了数次反弹,导致探测器最终落 在了悬崖边而不是锚固在预期着陆点,这对其探测 任务造成了不利影响;Osiris-Rex 任务在取样器设计 时认为目标小行星"贝努"表面存在大量风化层,因 此其取样器采用了高压气体收集风化层的设计。但 当Osiris-Rex 到达目标小行星后,发现其表面特性 与预期存在较大差异,虽然探测器顺利完成了风化 层取样,但是实现难度大于预期。因此如何在形貌 不规则小天体表面稳定附着,如何在介质特性不确 知小天体表面可靠取样是目前取样返回探测任务亟 待解决的技术难题。

针对该技术难题,科研人员提出了多种探测器 附着取样设计方案,且有的已完成在轨验证。例如 针对 Havabusa 系列探测器,提出了"触碰附着、射弹 取样"的附着取样方案,其特点是附着时间短,探测 器侧翻及反弹风险低(失控风险小),对星表形貌及 介质适应性强;但是样品采集时间短,取样次数有 限,取样量少。对 Osiris-Rex 类探测器提出了"触碰 附着、高压气体取样"的附着取样方案,将取样头安 装于机械臂末端进行取样,该方案在附着时间、失控 风险、星表形貌适应性方面与 Hayabusa 类似,此外 其可多次取样,但只能采集星表风化层样品。对 MarcoPolo-R 探测器提出了"触碰附着、射弹破岩并 清扫收集"的附着取样方案,与 Osiris-Rex 类似,将 取样器设计于机械臂末端进行取样,该取样方式在 附着时间、失控风险、星表形貌适应性方面与 Hayabusa、Osiris-Rex 类似,其取样器通过破岩适应 多种介质,通过清扫增大样品采集量,取样能力强。 上述附着取样方案仅实现了探测器在小天体表面的 短时触碰取样,尚未实现探测器在小天体表面的长 时间附着固定及取样(特指附着固定后进行取样), 均规避了探测器在小天体表面的长时间附着固定难 题。解决该难题对提高探测器在小天体表面停留时 间、延长取样时间、提高取样量、开展原位资源勘察

以及未来的小天体自防御及资源利用等均具有重要 意义。

本文结合我国小天体探测中附着固定及取样任 务需求,研究可附着固定及取样的探测器、附着取样 机器人机械系统实现方案,着力解决探测器在弱引 力且不规则、环境未知且不确定小天体表面的稳定 着陆、长时间附着固定、可靠取样等难题。本文首先 提出了一种具备在岩质类小天体表面进行附着固 定、附着取样、接触取样等多种功能融合的附着取样 机器人机械系统设计方案;随后采用仿真手段对机 器人机械系统的设计合理性进行了仿真分析;最后 研制了原理样机,并用实验手段对附着固定、样品采 集等核心环节进行了试验验证。

1 附着取样机器人设计约束及设计指标

1.1 设计约束

附着取样机器人设计时需考虑的小天体特性主要体现在以下几个方面:

1)星表弱引力。小天体表面引力极小,一方面 导致探测器着陆时易反弹,这要求探测器着陆时能 够对冲击能量进行耗散,且着陆后能够与小天体形 成机械固连防止飘走;另一方面导致取样时样品易 于悬浮或飞溅,这要求能够对悬浮或飞溅的样品进 行收集。

2) 星表形貌非结构化。大多数小天体直径位 于数十米到数百米量级之间,其表面难以找到类似 于月球、火星等大星体表面平坦的地形用于着陆。 这要求探测器在小天体星表着陆时能够根据地形匹 配着陆构型,确保稳定着陆,不发生倾覆;同时探测 器着陆后应能够进行星体姿态调整,以利于探测器 上载荷开展后续探测任务。

3) 星表介质特性未知。星表介质特性主要影 响着陆阶段附着机构在星表的缓冲特性,着陆后附 着机构在星表的固定以及取样器与星表的相互作用 等。这要求探测器着陆时缓冲阻尼自适应,且附着 机构、取样器等对星表介质有较强适应性。

1.2 性能指标

附着取样机器人性能指标见表1。

Table 1 enormalies indexes of ancienting and sampling robot						
承载探测器质量/	附着取样机器人质量/	竖向着陆速度/	横向着陆速度/	着陆发动机下压力/	附着力/	
kg	kg	$(\mathbf{m} \cdot \mathbf{s}^{-1})$	$(\mathbf{m} \cdot \mathbf{s}^{-1})$	Ν	Ν	
≤2 000	≤50	≤0.12	≤0.05	≤50	≥200	
单次附着取样时间/	单次接触取样时间/	取样量/	取样次数/	姜陆早期形居早	着陆点介质	
min	s	g	次	有阳点地应付点	特性	
≤2	≤5	≥100	≥2	适应复杂地形	岩石类	

表 1 附着取样机器人系统指标

2 附着取样机器人机械系统设计

2.1 基本组成及工作原理

附着取样机器人机械系统核心组成为机械臂和 附着取样器,如图 1 所示。4 个机械臂均布于探测 器外围,每个机械臂包含 4 个模块化关节,发射时折 叠压紧,着陆前展开;附着取样器安装于机械臂末端 位置,其兼具附着固定及取样功能。探测器顶部设 计有 20 N 下压力发动机,该发动机在着陆时用于提 供下压力,防止探测器着陆反弹,在着陆后用于提供 附着取样器钻进星表的钻压力,发动机在探测器固 定完成后即关闭。着陆时,附着取样机器人的机械 臂实时感知附着取样器与星表的接触力信息,4 个 机械臂通过力柔顺控制自适应星表地形,同时利用 机械臂柔顺运动过程中的关节反驱对着陆冲击能量 进行耗散,实现主动软着陆。附着取样器内部设计 有超声波钻进机构和磨削清扫机构。超声波钻进机 构可通过在星表打孔形成机械固连,而磨削清扫机 构可对打孔产生的样品进行收集,收集的样品被封 装于附着取样器外置的样品容器中。附着取样器内 部的磨削清扫机构也可对附着点进行磨削和清扫, 通过磨削方式实现取样。取样完成后,探测器利用 机械臂将样品容器放入返回器。如果探测器附着固 定失败,其仍可利用附着取样器内部高速旋转的磨 削清扫机构实现接触取样,实现附着取样机器人与 Osiris-Rex 探测器类似的接触取样功能。此外,该附 着取样机器人可通过4个机械臂之间的步态协调及 附着取样器的多次附着固定在小天体表面爬行,实 现多点探测。

与已有设计方案相比,该附着取样机器人在实现附着固定、附着取样、接触取样等核心功能同时, 兼顾探测器自适应主动着陆缓冲、放样、爬行、调姿、 辅助起飞等功能,是一种高度集成化的附着取样设 计方案。

Fig.1 Configuration of anchoring and sampling robot

2.2 腿臂复用机械臂设计

腿臂复用机械臂兼顾了着陆腿和样品转移机构 两种功能。每个机械臂有4个关节,第1关节为偏 航关节,第2、3、4关节为俯仰关节,机械臂配置如图 2所示。

机械臂第1、2、3关节相同,第4关节较小,两种 关节额定输出扭矩分别≥30、15 N·m,额定输出转 速均≥90°/s,单关节质量≤2.0、1.5 kg,重复定位精 度均≤0.5°,力矩传感器精度≤1%FS.。4个关节传 动方式相同,基本组成均为制动器、电机、谐波减速 器、输出端力矩传感器、柔性环节、输出端位置传感 器等,关节组成如图3所示。

关节输出端位置传感器用于反馈关节输出位 置;输出端力矩传感器是机械臂工作的力感知单元, 可感知机械臂末端载荷,判断附着取样器是否与星 表接触,实时监测附着过程中的力信息等;柔性环节 可防止着陆阶段冲击载荷对关节造成损坏;制动器 实现机械臂构型保持。着陆瞬间,机械臂根据其与 星表的接触力控制各关节进行反驱阻抗运动,通过 关节的反驱转动实现对探测器着陆冲击能量的耗 散,即实现了主动软着陆。根据关节性能指标可知, 即使探测器以最大着陆速度(竖向 0.12 m/s、横向 0.05 m/s)接触星表时,4 个机械臂的第 2、3 关节分 别进行<10°反驱可耗散竖向着陆载荷,第 1 关节反 驱<5°可耗散横向着陆载荷。

2.3 附着取样器设计

附着取样器三维模型如图 4 所示,安装于机械 臂末端位置,兼具固定和取样功能。其主要由壳体、 超声波钻进给机构、超声波钻、钻杆、砂轮、毛刷、砂 轮进给机构、砂轮驱动机构、足垫、样品容器等组成, 样品容器上设计有进样口。超声波钻可在超声波钻 进给机构驱动下在壳体内上下移动,砂轮与毛刷固 连且安装于砂轮进给机构上,砂轮和毛刷可在砂轮 进给机构驱动下壳体内上下移动。超声波钻与砂 轮/毛刷在壳体内异面布置,相互之间互不干涉、相 互独立。在壳体底部安装有足垫,足垫固连于壳体。 样品容器以环状形式嵌套在壳体底部外表面,在一 定拉力作用下其可与壳体脱开。超声波钻利用压电 陶瓷的逆压电效应,在超声频交流电激励下压电陶 瓷产生几千赫兹到几万赫兹的超声频机械振动,采 用极小钻压力在数十秒内可在岩石表面产生数毫米 的深孔,特别适合于小天体等微重力环境中岩石介 质的打孔操作^[16]。附着取样器通过砂轮和毛刷对 硬质岩石和风化层均可取样,确保了探测器针对特 性未知小天体具有取样能力。

图 4 附着取样器三维模型

Fig.4 3D model of anchoring and sampling manipulator

2.4 附着取样机器人先进性分析

本文所提方案核心功能和性能与国际先进方案 的对比如表 2 所示。

表 2 本文方案核心功能国际对标

	Fab.2	International	benchmarking	of core	functions	of r	proposed	scheme
--	-------	---------------	--------------	---------	-----------	------	----------	--------

方 案	取样方式	固定	方式	取样对象	封装形式
本文附着取样机器人	附着取样+接触取	双样 超声波钻	机械固连	岩石、风化层	独立封装
Hayabusa 1	接触取样	Э	î	岩石、风化层	独立封装
Hayabusa 2	接触取样	Э	ĉ	岩石、风化层	独立封装
Rosetta	附着取样	锚	固	表层软介质	无
Osiris-Rex	接触取样	Э	ĉ	风化层	非独立封装
方案	附着固定力/N	取样耗时/s	取样次数/次	取样量/g	取样深度
本文附着取样机器人	≥200	附着取样≤120, 接触取样≤5	≥2	≥100	表层
Hayabusa 1	0	≤5	≥2	≥0.1	次表层
Hayabusa 2	0	≤5	≥2	≥0.1	次表层
Rosetta	≥50(锚固失败)	未知	≥2	10~40 mm ³ (单次)	表层、次表层
Osiris-Rex	0	≤5	≥2	60~2 000	表层

探测方式方面,本文方案在保证取样返回同时 独具附着固定功能,该功能可延长探测器在星表停 留时间,使得样品采集和原位探测更易于开展,优于 不具有附着固定功能的探测方案;附着固定方面,本 文方案采用超声波钻固定,可实现小钻压力下在岩 石类介质中的快速固定,且固定力较大,优于无附着 固定力的探测方案;取样方面,本文方案兼顾接触和 附着两种取样模式,单次取样耗时与国际先进方案 相当,但是由于其具有附着取样功能,因此在取样总 次数方面更具优势,有利于获得更多样品;此外,本 文方案在取样深度、样品粒径、封装形式、取样对象 方面与国际先进方案相当。

3 附着取样过程仿真分析

3.1 着陆缓冲仿真分析

为了验证本文所提的通过机械臂关节反驱实现 探测器着陆缓冲方案的可行性,利用 ADAMS 和 MATLAB 软件联合对探测器在小天体表面的着陆缓 冲过程进行仿真分析。仿真模型如图 5 所示,探测 器 4 个机械臂分别标记为①、②、③、④,仿真中设 置星表固定坐标 o-xyz,探测器竖直着陆速度 v_n 指向 星表z方向,水平着陆速度 v₁沿星表x方向。仿真时 探测器质量为 2 000 kg,竖向着陆速度 0.12 m/s,横 向着陆速度 0.05 m/s,着陆点摩擦因数 1.0,着陆面 刚度 500 000 N/m,重力加速度 0 g,着陆面倾角为 0°(4 腿同时着陆)。探测器与星表接触瞬间,其顶 部施加沿中心线竖直向下的 20 N 推力。

Fig.5 Landing simulation model of the spacecraft

探测器机械臂关节施加主动电磁阻尼,且以竖 直速度 $v_n = 0.12 \text{ m/s}$ 、水平速度 $v_t = 0.05 \text{ m/s}$ 着陆 时,其速度、位移以及各机械臂与星表的接触力分别 如图 6 所示。

由图 6 可知,探测器着陆稳定(速度降为 0 m/s) 时间为 2.3 s,由机械臂缓冲导致的探测器本体高度 下降 128.5 mm,着陆过程中探测器未发生反弹。由 于存在水平着陆速度,各机械臂与小天体表面的接 触力不同,其中腿①的接触力最小,腿③的接触力最 大,腿②、④的接触力基本相同,这与探测器水平速 度由腿①指向腿③符合。着陆时最大接触力发生在 腿③为 1 380 N,该力峰值是由于着陆瞬间各阻尼电 机运动延迟而导致。经仿真可知,探测器着陆附着 时无反弹,其着陆冲击能量可通过机械臂关节反驱 实现耗散。

图 6 探测器着陆仿真结果

3.2 取样仿真分析

小天体样品颗粒的运动特性在弱引力环境下与 重力环境下存在较大差异,且地面重力环境下通过 试验手段实现样品颗粒微重力运动模拟难度极大。 为了分析本文附着取样器取样时样品颗粒运动特 性,验证设计的正确性,本文通过仿真对附着取样器 磨削和清扫操作进行分析。附着取样器取样时,内 部高速旋转的砂轮和毛刷对星表进行磨削和清扫以 产生样品,同时该样品在砂轮和毛刷高速撞击下经 进样口飞入样品容器,取样完成。

3.2.1 砂轮磨削取样仿真分析

使用 EDEM 软件建立砂轮和模拟星壤离散元 模型,仿真模型中模拟星壤密度参照 C 类小行星平 均密度,其余参数参照地面岩石类介质,模拟星壤参 数为:密度 2.2×10³ kg/m³、泊松比 0.44、剪切模量 1.0×10⁷ Pa、恢复系数 0.35、静摩擦因数 0.44、滚动摩擦因数 0.2;模拟星壤与砂轮接触的恢复系数为 0.75、静摩擦因数和滚动摩擦因数均为 2。模拟星壤 相互之间的黏结力通过 bongding 模型实现。砂轮的转速为 3 000 r/min。

砂轮磨削模拟星壤的仿真结果如图 7、8 所示, 箭头所指方向为样品颗粒的速度方向。可以看出, 模拟星壤在受到砂轮磨削后产生的样品颗粒运动方 向与水平方向的夹角在 0°~40°,同时可知样品颗 粒运动速度在 *x* 向和 *z* 向分量较大、*y* 向分量很小。 可见本文附着取样器的样品容器通过进样口进行样 品收集的设计是可行的。

图 7 砂轮磨削离散元仿真

Fig.7 Discrete element simulation of wheel grinding

3.2.2 毛刷清扫仿真研究

在 EDEM 软件中建立毛刷清扫样品颗粒的离散 元模型,毛刷转速与砂轮一致,设置为 3 000 r/min,仿 真参数与磨削取样一致,仿真结果如图 9、10 所示。 通过仿真可知,样品颗粒运动方向与水平方向的夹 角范围为 0°~45°,同时可知样品颗粒运动速度在 x 向和 z 向分量较大、y 向分量小,样品颗粒主要沿毛 刷径向运动。在毛刷清扫作用下,样品颗粒的初始 合速度为 1.78 m/s, 经过毛刷多次碰撞后降为 0.76 m/s。同时可知,样品颗粒在毛刷清扫作用下的 运动速度小于砂轮磨削作用下的运动速度。可见利 用毛刷清扫也可将样品颗粒经进样口送入样品容器,本文附着取样器样品收集设计是可行的。

图 9 毛刷清扫离散元仿真

图 10 毛刷清扫时单个样品颗粒的运动速度

Fig.10 Velocity of a sample particle subject to brush cleaning

4 地面模拟实验验证

4.1 全流程演示实验

为了验证附着取样机器人方案的正确性,研制 了原理样机,在此基础上对探测器着陆缓冲、附着固 定、取样、放样等操作进行了全流程实验验证。着陆 面采用砂岩来近似模拟岩石类小天体表面,实验过 程如图 11 所示。

图 11 附着取样全流程试验示意图

Fig. 11 Schematic diagram of whole process test of anchoring and sampling

实验流程如下:

1)将附着取样机器人安装于探测器模拟体上, 并吊挂于摆锤式地面微重力试验平台上,控制机械 臂全部展开为着陆状态。在微重力工装辅助下探测 器以初始速度着陆,着陆瞬间探测器顶部喷气装置 产生 20 N下压力,机械臂通过自适应控制完成主动 缓冲,附着取样器与砂岩平稳贴合。

2)探测器顶部喷气持续 2 min,超声波钻以12~
15 mm/min 速度钻进着陆点砂岩,持续钻进 120 s
(试验完成后对钻进深度进行测量,分别为 22.3、
22.1、23.4、24.0 mm)。

3)附着取样器内部的超声波钻附着固定完成 后,其内部的毛刷对产生的钻屑进行清扫取样,随后 砂轮进行磨削取样。

4)取样完成后,将其中一个附着取样器内部的 超声波钻提起以解除固定,再利用机械臂将该附着 取样器送至返回器放样位置,并将样品容器放入返 回器中,完成放样。

上述实验过程中,通过悬挂砝码方法对探测器 产生的附着力进行了测试,如图 12 所示。附着完成 后,在探测器轴线位置安装钢丝绳,在钢丝绳上串接 拉力计,并在末端吊装砝码,逐渐增加砝码质量,观 察附着取样器与砂岩接触间隙。将砝码逐渐增加至 20 kg,4 个机械臂末端的附着取样器均未脱开附着 点,附着取样器未被拉起。证明该种工况下附着取 样机器人可产生至少 200 N 的附着力。

Fig.12 Test for anchoring force

4.2 磨削取样实验

在砂岩、花岗岩、45 号钢 3 种介质中进行砂轮 磨削取样实验。

用附着取样器砂轮分别对砂岩、花岗岩、45 号 钢进行磨削,砂轮运转速度为4000 r/min,供给电 流为0.44 A。磨削方式有砂轮表面磨削和砂轮侧边 磨削两种,磨削时间分别为30、60、90 s,实验结果 分别见图13~15。

图 13 砂轮表面和侧边分别磨削砂岩

Fig.13 Grinding of sandstone via surface and side of grinding wheel

图 14 砂轮表面和侧边分别磨削花岗岩

(b) 侧边磨削

Fig.14 Grinding of granite via surface and side of grinding wheel

图 15 砂轮表面和侧边分别磨削 45 号钢板

- Fig. 15 Grinding of 45 # steel plate via surface and side of grinding wheel
 - 由上述3种介质的磨削实验可知:

1)通过砂轮磨削方式对岩石类及金属类介质 均可进行取样,且磨削时间越长磨痕越深,产生的样 品越多,进一步验证了本文取样设计方案的可行性;

2)砂轮分别采用表面和侧边进行磨削时,对材 料产生的接触应力不同,侧边磨削方式接触应力大, 磨削深度大,产生的样品多;短时间的侧边磨削比长 时间的表面磨削生成样品量多,因此接触应力比磨 削时间对样品生成量影响更大。

5 结 论

本文提出了一种具有自适应主动缓冲、超声波 钻附着固定、磨削清扫双模式取样的一体化附着取 样机器人机械系统方案。

1)附着取样机器人腿臂复用,采用主动自适应 反驱控制策略,可实现弱引力条件下探测器着陆冲 击能量耗散,为探测器在弱引力、不规则小天体表面 稳定、无反弹、多次着陆提供了解决方案。经仿真分析,探测器以极限速度着陆平坦区域时,着陆稳定时间≤2.5 s,探测器主体下降高度<130 mm,着陆过程 无反弹。

2)基于超声波钻钻压力小、硬质岩石中钻进效 率高、钻屑即为样品的特点,设计了一体化附着取样 器。如果成功附着固定,可通过毛刷清扫方式对钻 屑或风化层进行取样,也可通过砂轮磨削方式对星 表进行取样;如果附着固定失败,可通过砂轮磨削实 现对星表的接触取样。一体化附着取样器兼顾了附 着取样和接触取样,极大地提高了探测器取样时的 冗余能力和针对不同介质的适应能力;

3)原理样机全流程实验表明,附着取样机器人 可实现着陆缓冲、附着固定、取样、放样等功能,且在 砂岩中的附着固定力可达 200 N;取样实验表明,本 文所提磨削取样方式对砂岩、花岗岩等岩石类以及 45 号钢等金属类介质均可进行取样。

参考文献

- [1] BINZEL R P, LUPISHKO D F, DI MARTINO M, et al. Physical properties of near-earth objects [M]. Tucson: University of Arizona Press, 2002: 255
- [2] BLAIR B R. The role of near-earth asteroids in long-term platinum supply[C]// Space Resources Roundtable II. Houston: Lunar and Planetary Institute, 2000; 5
- [3] MCCOY T J, ROBINSON M S, NITTLER L R, et al. The near earth asteroid rendezvous mission to asteroid 433 Eros: a milestone in the study of asteroids and their relationship to meteorites[J]. Geochemistry, 2002, 62(2): 89. DOI: 10.1078/0009-2819-00004
- [4] RAYMAN M D, VARGHESE P, LEHMAN D, et al. Results from the Deep Space 1 technology validation mission [J]. Acta Astronautica, 2000, 47 (2/3/4/5/6/7/8/9): 475. DOI: 10.1016/S0094-5765(00)00087-4
- [5] BROWNLEE D E, TSOU P, ANDERSON J D, et al. Stardust: Comet and interstellar dust sample return mission[J]. Journal of Geophysical Research Planets, 2003, 108 (E10): 8111. DOI: 10. 1029/2003JE002087
- [6] GUO Yanping, FARQUHAR R W. New horizons mission design[J]. Space Science Reviews, 2013, 140:49. DOI: 10.1007/s11214-

007-9242-y

- [7] RAYMAN M D, FRASCHETTI T C, RAYMOND C A, et al. Dawn: a mission in development for exploration of main belt asteroids Vesta and Ceres [J]. Acta Astronautica, 2006,58(11): 605. DOI: 10.1016/j.actaastro.2006.01.014
- [8] 孟林智,黄江川,叶培建,等.嫦娥二号卫星多目标多任务设计与经验[J].中国科学:技术科学,2013,43(6):585
 MENG Linzhi, HUANG Jiangchuan, YE Peijian, et al. Design and experience of Chang'e-2 multi-target and multi mission [J]. Scientia Sinica Technologica, 2013,43(6):585. DOI: 10.1360/092013-311
- [9] BIBRING J P, ROSENBAUER H, BOEHNHARDT H, et al. The Rosetta Lander ("Philae") investigations [J]. Space Science Reviews, 2007,128: 205. DOI: 10.1007/s11214-006-9138-2
- [10] YOSHIKAWA M, KAWAGUCHI J, YANO H et al. Asteroid sample return mission Hayabusa, its engineering challenges and scientific results[C]// 41st Lunar and Planetary Science Conference. Texas: LPI Press, 2010: 2746
- [11] LANGE C, DIETZE C, HO T M, et al. Baseline design of a mobile asteroid surface scout (MASCOT) for the Hayabusa-2 mission [C]//38th COSPAR Scientific Assembly. Bremen: COSPAR Press, 2010:1
- [12] NARDI L, PALOMBA E, LONGOBARDO A, et al. Mapping olivine abundance on asteroid (25143) Itokawa from Hayabusa/NIRS data[J]. Icarus, 2019, 321: 14. DOI: 10.1016/j.icarus.2018.10. 035
- [13] LAURETTA D S, BALRAM-KNUTSON S S, BESHORE E, et al. OSIRIS-REx: sample return from asteroid (101955) Bennu [J]. Space Science Reviews, 2017, 212: 925. DOI: 10.1007/s11214-017-0405-1
- [14] RIZK B, D'AUBIGNY C D, HERGENROTHER C W, et al. OSI-RIS-REx low-velocity particles during outbound cruise [J]. Advances in Space Research, 2019, 63(1): 672. DOI: 10.1016/j. asr.2018.08.020
- [15] BARUCCI M A, CHENG A F, MICHEL P, et al.MarcoPolo-R near earth asteroid sample return mission [J]. Experimental Astronomy, 2012, 33: 645. DOI: 10.1007/s10686-011-9231-8
- [16] QUAN Qiquan, BAI Deen, ZHAO Zhijun, et al. Development of a rotary-percussive ultrasonic drill for extraterrestrial rock sampling
 [C]//2017 IEEE International Ultrasonics Symposium (IUS).
 Washington DC: IEEE, 2017: 17317970. DOI: 10. 1109/ ULTSYM.2017.8091595

(编辑 杨 波)

• 8 •