第54卷 第7期 2022年7月

纳米 CaB/MoDDP 复合润滑油添加剂的摩擦学性能

姜雨辰,唐 玮,彭玉兴

(中国矿业大学 机电工程学院, 江苏 徐州 221116)

摘 要:为提高润滑油的抗磨减摩性能,提升机械设备在恶劣工况下运行的稳定性和安全性,通过四球机和低速重载摩擦磨 损试验机研究纳米硼酸钙(CaB)和二烷基二硫代磷酸钼(MoDDP)复合润滑油添加剂的减摩抗磨性能,期望取得较单一添加 剂更优异的润滑效果。研究结果显示:制备的纳米 CaB为不规则的纳米薄片状,平均尺寸为 50~150 nm,经油酸改性后在基 础油中具有良好的分散稳定性;纳米 CaB和 MoDDP均可显著提高润滑油的润滑效果,随着纳米 CaB和 MoDDP添加质量分数 的增加,摩擦因数和磨斑直径呈现先降低后升高的趋势,纳米 CaB和 MoDDP的最佳添加质量分数分别为 2.0%和 1.5%;与单 一添加 CaB、MoDDP 相比,复合 CaB/MoDDP 可进一步改善润滑油的减摩抗磨性能,MoDDP和 CaB 的最佳质量配比为 1.5%; 3.0%,此时摩擦副的摩擦因数最小,磨痕最浅,磨斑直径最小,最大无卡咬负荷最高,并且在低速重载工况下,显示出优良的润 滑效果,表明 CaB/MoDDP 复合润滑油添加剂具有良好的减摩抗磨效果,可以显著提高润滑油的性能。

关键词:纳米硼酸钙;二烷基二硫代磷酸钼;复合润滑油添加剂;抗磨减摩;低速重载

中图分类号: TH117.1 文献标志码: A 文章编号: 0367-6234(2022)07-0111-09

Tribological performance of nano CaB/MoDDP compound lubricant additive

JIANG Yuchen, TANG Wei, PENG Yuxing

(School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China)

Abstract: To improve the tribological properties of lubricant oil and enhance the stability and security of mechanical equipment under severe working conditions, the friction reduction and anti-wear performance of nano-calcium borate (CaB) and molybdenum dialalkyl dithiophosphates (MoDDP) composite additives were studied using four-ball tester and block on ring tester. The results showed that the prepared nano-CaB was a nanosheet with irregular shape and the average size was 50-150 nm. After oleic acid modification, it showed good dispersion stability in base oil. Both nano-CaB and MoDDP could significantly improve the lubrication effect of lubricant oil. With the increasing of nano-CaB and MoDDP mass fraction, the friction coefficient and grinding spot diameter firstly decreased and then increased. The optimal adding mass fraction of nano-CaB and MoDDP was 2.0% and 1. 5%, respectively. Compared with single addition of CaB and MoDDP, compound CaB/MoDDP could further improve the friction reducing and anti-wear performance of lubricant oil. The optimal mass fraction ratio of MoDDP and CaB is 1.5% : 3.0% that showed the smallest friction coefficient and grinding spot diameter, and the highest maximum nonseizure load. It also showed excellent lubrication effect under low speed and heavy load condition. **Keywords**: nano-calcium borate; MoDDP; composite lubricant additives; friction reduction and anti-wear performance; low speed and heavy load

恶劣工作条件下的机械设备长期处于低速重载、高温高湿、强腐蚀性的工作环境,因摩擦磨损导致的设备故障甚至生产事故频发^[1-3],改善机械设备润滑条件是减少腐蚀、降低摩擦磨损、延长使用寿命的有效手段^[4-6]。

抗氧化剂和极压抗磨剂是改善润滑油性能的重 要添加剂。抗氧剂用自身还原反应阻止烃基被氧

通信作者: 唐 玮, tangwei@ cumt.edu.cn

化^[7],起到持续稳定润滑的作用;极压抗磨剂通过 与金属表面反应生成一层化学反应膜,避免摩擦副 间的直接接触,降低磨损,在恶劣的工况下可以显著 改善润滑效果^[8]。但是,单一种类的润滑油添加剂 仅侧重改善润滑油的某一性能,研究表明复合型润 滑油添加剂结合了多种添加剂的功能,可以显著提 升油品性能^[9-12]。

硼酸钙(CaB)是一种中空不规则的片状结构, 相关研究表明,CaB可以作为极压抗磨润滑油添加 剂使用,与某些添加剂复合具有良好的协同抗磨作 用。例如,黄祖强等^[13]制备的纤维素酯/CaB复合 材料是一种绿色新型润滑油添加剂,从低温低负荷 到高温高负荷都具有良好的极压抗磨和清洁性能。

收稿日期: 2021-12-03

基金项目: 江苏省高校优势学科建设工程项目(PAPD No.48)

作者简介:姜雨辰(1997—),男,硕士研究生;

唐 玮(1981—),女,教授,博士生导师

Li 等^[14]采用液相超声溶出法制备的 CaB/氧化石墨 烯纳米复合材料,具有优异的协同抗磨性能和承载 能力。Liu 等^[15]合成的复合纳米苯乙烯/ CaB 可在 表面沉积生成独特的壳核结构,增加润滑油的承载 能力,具有优异的耐磨效果。

二烷基二硫代磷酸钼(MoDDP, C₂₈H₆₀O₄P₂S₄Mo) 作为抗氧化剂使用,可减少因润滑油氧化而产生油 泥、不溶性极性胶质及沉淀物,也可增大润滑油膜的 强度^[16-18],在高冲击和高扭矩工况下表现出优异的 摩擦学性能。关于 MoDDP 作为复合添加剂的研究 表明,相比单一添加剂,复合添加剂经协同作用后, 其减摩 抗 磨 效果 更优。史佩 京等^[19]研究发现 MoDDP 与清净剂质量比为 2:1 时,复配体系的抗 磨、减摩性呈协同增效性。王任芳等^[20]的研究发 现,硫代过氧二磷酸酯(TPDP)具有抗磨但无减摩 作用,经与 MoDDP 复合后,可显著提高润滑油的减 摩抗磨效果。Du 等^[21]提出 MoDDP 与二烷基二硫 代磷酸锌(ZnDDP)对矿物油的抗氧化作用有协同 增效作用,且添加剂具有降解作用。

综上所述,纳米 CaB 具有良好的极压抗磨与清 洁效果,MoDDP 则可显著改善润滑油的抗氧化性, 两者和其他材料复合都具有良好的协同作用。因此 本研究拟将纳米 CaB 和 MoDDP 复合,研究其作为 润滑油添加剂的分散稳定性及在低速重载工况下减 摩抗磨效果,期望取得较单一添加剂更优异的润滑 效果,提高机械设备在恶劣工况下的运行稳定性和 安全性。

1 试验

1.1 纳米硼酸钙的制备和表征

制备纳米 CaB 所用的试剂为分析纯氢氧化钙 和硼酸(购于 Sigma-Aldrich 公司);试验用水为去离 子水。具体步骤如下:取 1.48 g 的氢氧化钙与6.1 g 的硼酸,分别溶于 500 mL 去离子水后,制得 0.04 mol/L的氢氧化钙乳浊液和 0.2 mol/L 的硼酸 溶液;在 SN-MS1 磁性搅拌器内用硼酸缓慢滴定氢 氧化钙乳浊液,搅拌转速为 100 r/min,反应温度为 40 ℃,反应时间 2 h,再放入 YM-100S 超声波清洗 机内均匀反应 30 min;最后将反应后的浊液通过 T50-1 溶剂过滤瓶进行真空抽滤,将抽滤过后的白 色粉末在 GW-250BE 恒温鼓风干燥箱内,100 ℃温 度下干燥 24 h;干燥后白色粉末质量为 4.62 g,将其 置于陶瓷研钵内研磨 20 min,随后在 JC-QM 立式行 星式球磨机球磨 10 h,完成纳米 CaB 的制备。

采用 Gemini SEM 500 场发射扫描电镜(FE-SEM) 对制备的纳米 CaB 进行形貌表征;通过

Thermo Scientific K-alpha X 射线光电子能谱(XPS) 分析纳米硼酸钙的化学元素组成及其价态, XPS 全 部图谱用 C1s 结合能(284.5 eV)校准。通过多晶 X 射线衍射(XRD)方法对纳米 CaB 进行组成成分比 例分析,工作电压和电流分别为 40 kV 和 40 mA, 扫 描范围 5°~80°。具体结果及讨论见正文 2.1。

1.2 纳米硼酸钙的表面改性

为了提高纳米 CaB 在基础油中的分散稳定性, 将制得的纳米 CaB 定量加入基础油,制备出一定质 量分数的油样,再分别加入 Span80、Span60、硬脂 酸、CTAB、油酸 5 种分散剂,在 60 ℃下加热搅拌,超 声震荡 1 h,对油样进行改性,并静置一个月。利用 紫外光分度计测试油样的吸光度,定量分析油样的 分散稳定性。纳米 CaB 润滑油吸光度最大时的波 长为 300 nm,因此检测不同分散剂油样在 300 nm 时的吸光度并进行比较。

图 1 为经不同分散剂改性后的润滑油添加剂吸 光度对比图。吸光度越大,说明相同体积油样中所 含有的纳米 CaB 粒子越多,纳米 CaB 在基础油中沉 淀越少,产生团聚效应越少,在基础油中分散越均 匀。结果显示油酸修饰纳米 CaB 的吸光度最大,说 明经油酸改性后的纳米 CaB 在基础油中的分散稳 定性最好,因此选择油酸作为纳米 CaB 的分散剂。

1.3 摩擦试验

实验所用添加剂为 MoDDP(购于润英联添加剂 有限公司)和自制纳米 CaB,基础油为液体石蜡油 (购于上海阿拉丁生化科技股份有限公司)。将 MoDDP 和改性纳米 CaB分别与基础油混合,制备出 质量分数为 0.5%、1.0%、1.5%、2.0%、3.0%的润滑 油样。将质量分数为 1.5%的 MoDDP 滴定于质量分 数为 3.0%的 CaB 润滑油样中,在 40 ℃温度下超声 波分散 20 min,分散后制得质量分数比为 1.5% : 3.0%的 MoDDP /CaB 复合润滑油。采用 SGW-10A 四球机评价不同质量分数的润滑油样的摩擦磨损性

· 113 ·

能,确定单一 CaB 和单一 MoDDP 添加剂的最佳添加比例,通过正交试验确定纳米 CaB/MoDDP 复合添加剂的最佳配比。依据国家标准 GB/T 3142—2019 和 NB/SH/T 0189—2017,试验在载荷 147 N、转速 1200 r/min、温度 75 ℃的工况下进行,试验时间 60 min,采用直径 12.7 mm 的 GCr15 钢球,每组试验重复 3 次。

在 YMJS-30G 冲击重载环块摩擦磨损试验机 上模拟低速重载试验,研究恶劣工况下纳米 CaB/ MoDDP 复合添加剂的抗磨减摩性能。试验载荷分 别为 600、800、1000 N,转速 300 r/min,温度25 ℃, 时间 2 h,试验采用的块为高碳铬轴承钢,环为 45 钢,每组试验重复 3 次。

2 结果与讨论

2.1 纳米硼酸钙分析

图 2 所示为制备纳米 CaB 的 FE-SEM 图,由图 2 可知,所制备的纳米 CaB 为形状不规则的纳米薄 片状结构,通过本文所采用的制备方法,CaB 的平均 尺寸可控制在 50~150 nm。

为了进一步表征纳米 CaB 的结构与组成,对纳 米 CaB 的 XPS 进行了测试,结果如图 3 所示。经查 阅元素对应轨道结合能,可判定制备的纳米 CaB 结 构式为 xB₂O₃ · yCaO · zH₂O。采用 XRD 方法对纳 米 CaB 进行组成成分比例分析,如图 4 所示。结果 显示氢氧化钙和硼酸反应产物与 PDF NO.22-0146 (Ca₂B₁₀O₁₇ · 5H₂O 的特征图谱)基本吻合,所以制 备的纳米 CaB 分子式近似为 Ca₂B₁₀O₁₇ · 5H₂O。

2.2 摩擦学性能

2.2.1 MoDDP 与纳米 CaB 的减摩抗磨性能

在四球摩擦磨损试验机上对比研究了基础油单 一添加质量分数分别为 0%、0.5%、1.0%、1.5%、 2.0%、3.0%的 MoDDP 和 CaB 时,润滑油的减摩抗磨 性能,结果如图 5 所示。

结果显示,纳米 CaB 和 MoDDP 可以显著提高基础油的减摩抗磨效果,随着纳米 CaB 和 MoDDP 添加质量分数的增加,摩擦因数和磨斑直径呈现先降低后升高的趋势,纳米 CaB 和 MoDDP 的最佳添加质量分数分别为 2.0%和 1.5%。

纳米 CaB 和 MoDDP 的减摩效果相似,在最优添加量时均可以降低大约 40.7% 的摩擦因数; MoDDP 的抗磨效果和稳定性都优于纳米 CaB,添加 2.0%的 CaB 可降低 7.2%的磨斑面积,而添加 0.5% 的 MoDDP 即可降低 19.2%的磨斑面积,且磨斑直径 随着添加量的增大变化不大。

为了进一步确定 CaB/MoDDP 复合添加剂的最优 配比,进行复合 CaB/MoDDP 的正交实验,结果如表 1 所示。利用显微镜对质量分数为 1.5%的 MoDDP 、2.0% 的 CaB 、1.5%: 3.0%的 MoDDP/CaB 、基础油 4 种油样 摩擦学试验后的钢球磨斑形貌进行了表征,结果如图 6 所示,箭头表示相对磨痕深度扫描的方向。

图 5 MoDDP 和 CaB 在不同质量分数下,摩擦因数与磨斑 直径的变化

Fig. 5 Variation of friction coefficient and spot diameter of MoDDP and CaB with different mass fractions

结果显示,与单一添加 CaB、MoDDP 相比,复合 CaB/MoDDP 又进一步改善了润滑油的减摩抗磨性 能。从表1中可以看出:在质量分数为2.0%的CaB 中添加 MoDDP,随着 MoDDP 添加量的增大,摩擦因 数变化不大:而在质量分数为 1.5%的 MoDDP 中添 加 CaB,随着 CaB 添加剂量的增加,摩擦因数有较明 显的降低,磨斑直径变化不大。从图6中可以看出 采用基础油作为润滑油的钢球表面划痕明显,出现 深度为5μm的凹坑,其他3种添加剂表面都未出 现明显的凹坑。通过表面磨痕形貌对比发现,采用 复合添加剂作为润滑油的钢球表面磨痕起伏小,表 面平整,再次表明其减摩抗磨效果最佳。综上,可见 CaB/MoDDP 的最佳质量配比为 1.5%: 3.0%,此时 润滑系统的摩擦因数最低,磨斑直径最小,磨痕最 浅,最大无卡咬负荷最高,润滑油的减摩抗磨效果最 优。本文研究表明:相比基础油, MoDDP/CaB 质量 比为1.5%: 3.0%时能降低约61%的摩擦因数和 50.6%的磨斑直径。同类文献研究显示:相比基础 油,纳米 CaB 和其他材料复合时,可降低约 23.6%~ 48.7% 的摩擦因数和 8%~46.1% 的磨斑直 径^[11-12,22-23];MoDDP 和其他材料复合时,可降低约 28.6%~43.8%的摩擦因数和 10.2%~36%的磨斑直径^[19-20,24]。可见与同类添加剂相比,质量比为 1.5%: 3.0%的 MoDDP/CaB 复合润滑油添加剂的减摩抗磨效果良好。

表1 复合润滑油添加剂正交实验

Tab.1 Orthogonal experiment of compound lubricant additives

实验序号	质量分数/%		□ 中 - - - - - - - - - - - - -	座雨古 47.7	D / N
	CaB	MoDDP	一	熠斑直径/mm	r_B / N
1	2.0	0	0.057	0.41	480
2	2.0	0.5	0.043	0.40	
3	2.0	1.0	0.041	0.33	
4	2.0	1.5	0.046	0.28	
5	2.0	2.0	0.040	0.30	
6	2.0	3.0	0.045	0.32	
7	0	1.5	0.057	0.30	598
8	0.5	1.5	0.053	0.33	
9	1.0	1.5	0.052	0.32	
10	1.5	1.5	0.042	0.31	
11	2.0	1.5	0.046	0.28	
12	3.0	1.5	0.035	0.29	686

(c)质量分数为1.5%:3.0%的MoDDP/CaB

(d)基础油

图 6 经 4 种油样摩擦过的钢球磨斑形貌及指定方向上的相对磨痕深度曲线

Fig.6 Spot morphology of steel balls under tribology tests of four oil samples and relative depth curves of wear marks in specific directions

2.2.2 MoDDP 与纳米 CaB 添加剂的低速重载试验

为了进一步验证 MoDDP 和纳米 CaB 添加剂在 低速重载工况下的减摩抗磨效果,在冲击重载环块摩 擦磨损试验机上开展了4种油样在转速300 r/min,载 荷 600、800、1 000 N 下的摩擦试验,结果如图 7 所示。 同时对 1000 N 载荷下 MoDDP/CaB 质量配比为 1.5% : 3.0%的油样和基础油样的块试样表面磨损形貌进 行了观察,如图 8 所示。

Fig.7 Average friction coefficient of oil samples under different loads and typical friction coefficient curves of oil samples under 1 000 N

(a)质量分数比为 1.5% : 3.0%的 MoDDP/CaB

(b) Base oil

图 8 1 000 N 下两种油样的磨斑形貌和表面磨痕深度曲线

Fig.8 Surface morphology and depth curves of two oil samples under 1 000 N

摩擦试验结果显示,4种润滑油样的摩擦因数都随着载荷的增大而增大,摩擦因数从高到低分别为基础油>质量分数为2%的CaB>质量分数为1.5%的MoDDP>质量配比为1.5%:3.0%的MoDDP/CaB,尤其在1000N重载下质量配比为1.5%:3.0%的MoDDP/CaB的摩擦曲线波动小,磨合期短,减摩效果显著,与四球机试验得到的结果一致。1000N载荷下的表面磨损形貌显示,质量配比为1.5%:3.0%的MoDDP/CaB油样润滑后的表面磨损深度为0.10mm,显著低于基础油0.75mm的磨损深度,并

且复合润滑油油样润滑后的表面磨痕均匀,未见明显的材料剥离,而基础油润滑的表面出现了大面积的材料脱落。根据 MoDDP 与纳米 CaB 的减摩抗磨机理分析,未添加添加剂的基础油在钢球表面形成的油膜厚度低,强度弱,在重载工况下,基础油油膜破裂,摩擦副间的黏着摩擦严重,摩擦因数高;而添加 MoDDP 和纳米 CaB 后,两者在摩擦过程中可以相互提高活性,有利于 Ca 和 Mo 元素的富集,进一步促进表面生成强度高、稳定性好的化学反应膜,在重载下具有很好的承载能力,减少了摩擦副之间的

直接接触,降低了黏着摩擦,同时纳米 CaB 吸附在 摩擦表面可以修复磨损表面,进一步改善摩擦表面 的磨损,因此在低速重载工况下,润滑复配体系显示 出良好的减摩抗磨效果。

2.2.3 MoDDP 与纳米 CaB 的减摩抗磨机理分析

通过上述研究可以发现, MoDDP 和 CaB 都可以 提高润滑油的减摩抗磨效果, MoDDP/CaB 复合添 加剂的效果最好。为了进一步探讨质量配比为 1.5%:3.0%的 MoDDP/CaB 复合添加剂的减摩抗 磨机理,采用 EDS 面扫分析磨损区域和未磨损区域 的表面元素分布,结果如表2所示。由表2可知,磨 斑表面区域 Fe 元素的含量明显减少、B 元素的分布 密度明显增大,同时伴随着 Ca、Mo 和S 等特征元素 的出现。

表 2 磨损和未磨损区域的 EDS 能谱分析元素成分表

Tab.2 EDS analysis of element compositions of worn and unworn areas

二書和古古八	质量分数/%			
儿系组成成分	磨损区域	未磨损区域		
В	34.57	-		
Р	0.09	0.023		
S	0.26	0.02		
Са	1.20	0.03		
Мо	2.26	0.50		
Fe	54.92	94.36		
Cr	2.24	1.44		

众所周知,未添加添加剂的基础油在钢球表面 形成的油膜厚度低、强度弱,表面容易发生黏着磨 损,脱离表面的材料在钢球间形成磨粒,伴随着磨粒 磨损和氧化磨损等磨损形式,因此表面磨损严重。 MoDDP 添加剂的减摩抗磨性能可归结为:摩擦过程 中,接触区发生化学反应形成含层片状结构的 MoS。 化学反应膜^[25-27], MoS, 层与层之间的结合力为范德 华力^[28],容易发生相对滑动,因此具有很好的减摩 效果。纳米 CaB 添加剂的减摩抗磨性能的主要原 因如下:首先,摩擦过程中 CaB 产生的活性 B 原子 渗入摩擦副表面,在摩擦热促进下生成硼铁化合物 (FeB和Fe₂B),该化学反应层具有高的耐磨性、硬 度和高温抗氧化性^[29,30]:其次,纳米薄片状的 CaB 可在摩擦力的剪切作用下铺展成膜,覆盖到摩擦副 表面,防止金属直接接触,降低黏着摩擦分量,改善 润滑油的极压性能:纳米 CaB 粒子也可直接吸附到 摩擦表面的划痕或凹坑处,起到填补修复磨损表面 的作用^[31-34]。

MoDDP/CaB 复合添加剂的优异减摩抗磨效果,

一方面是由于 B 原子在摩擦过程发生化学反应形成的硼铁化合物化学反应层,以及 MoDDP 发生化学反应生成的 MoS₂化学反应膜,这些具有低剪切强度、高熔点的金属化合物层,有效地防止金属因表面的直接接触而引起的黏着磨损。另一方面, MoDDP 和纳米 CaB 在摩擦过程中具有很好的协同作用,可以相互促进,进一步提升了润滑油膜的强度和稳定性,从而提高了润滑复配体系的减摩抗磨效果。

3 结 论

1) 制备的纳米 CaB 为形状不规则的纳米薄片 状结构,平均尺寸为 50~150 nm,分子式近似为 Ca₂B₁₀O₁₇·5H₂O,经油酸改性后在基础油中具有良 好的分散稳定性。

2) 纳米 CaB 和 MoDDP 均可以显著提高润滑 油的减摩抗磨效果,随着纳米 CaB 和 MoDDP 添加 质量分数的增加,摩擦因数和磨斑直径呈现先降低 后升高的趋势,纳米 CaB 和 MoDDP 的最佳添加质 量分数分别为 2.0% 和 1.5%,其减摩效果相似,但是 MoDDP 的抗磨效果和稳定性都优于纳米 CaB。

3) 与单一添加 CaB、MoDDP 相比,复合 CaB/ MoDDP 可进一步改善润滑油的减摩抗磨性能。正 交试验表明, MoDDP/CaB 的质量配比为 1.5% : 3.0%时,摩擦副的摩擦因数最小,磨痕最浅,磨斑直 径最小,最大无卡咬负荷最高;在低速重载工况下, 最佳复合配比油样显示出优良的润滑效果,相对于 单一加质量分数为 2.0% 的 CaB 和单一加 1.5% 的 MoDDP 的润滑油样,其摩擦曲线波动小,磨合期短, 减摩抗磨效果更显著。

参考文献

[1] 李玉龙,何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与
 性能增强[J].清华大学学报(自然科学版), 2021, 61(12):
 1405

LI Yulong, HE Yongyong, LUO Jianbin. Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1405. DOI:10.16511/j.cnki.qhdxxb. 2021.25.023

- [2] LIU Mingyong, QU Yang, HU Chenglong, et al. Lubrication performance of helical gear pair under dynamic load based on local involute profile [J]. Journal of Tribology, 2021,144(2):1. DOI: 10.1115/1.4050850
- [3] 于坤. 综机设备润滑管理及故障诊断技术应用[J]. 化工管理, 2020, 33:156
 YU Kun. Application of lubrication management and fault diagnosis

YU Kun. Application of lubrication management and fault diagnosis technology for fully mechanized machinery equipment [J]. Chemical Enterprise Management, 2020, 33:156

[4] 程雪利, 刘刚. 大型机械设备分布式智能润滑控制系统研究

[J]. 河南工学院学报, 2021, 29(4):1

CHENG Xueli, LIU Gang. Research on distributed intelligent lubrication control system for large mechanical equipment [J]. Journal of Henan Institute of Technology, 2021, 29(4):1

- [5] JOANNA S, MALGORZATA G, JERZY S, et al. Factors of work environment hazardous for health in opinions of employees working underground in the 'Bogdanka' coal mine [J]. Annals of Agricultural and Environmental Medicine, 2019, 26(3):409. DOI: 10.26444/aaem/106224
- [6] SHENG Lianchao, LI Wei, YE Guo, et al. Stability and combined vibration of gear transmission system in shearer cutting section under multi-parameter excitation [J]. International Journal of Dynamics and Control, 2020, 9:392. DOI:10.1007/s40435-020-00687-y
- [7] RENGUO L, SORA S, HIROSHI T, et al. A study on the tribofilm growth and tribological properties of tribofilms formed from zinc dialkyl dithiophosphate (ZDDP) and molybdenum dialkyl dithiocarbamate (MoDTC) [J]. Japanese Society of Tribologists, 2018, 13(3):157. DOI: 10.2474/trol.13.157
- [8] TANG Zhenglin, LI Shaohui. A review of recent developments of friction modifiers for liquid lubricants (2007-present) [J]. Current Opinion in Solid State and Materials Science, 2014, 18(3):119. DOI: 10.1016/j.cossms.2014.02.002
- [9] 李剑锋,朱真才,彭玉兴,等. NbSe₂/Ag纳米复合材料的制备 及其作为煤矿机械机用润滑油添加剂摩擦学行为的研究[J]. 摩擦学学报,2021,41(2):231

LI Jianfeng, ZHU Zhencai, PENG Yuxing, et al. Preparation of NbSe₂/Ag nanocomposites and its tribological behavior as lubricant oil additives for mining machinery [J]. Tribology, 2021,41(2): 231. DOI:10.16078/j.tribology.2020086

[10] 刘享. 石墨烯负载硼酸钾润滑油添加剂的制备及摩擦学性能研 究[D]. 厦门:集美大学, 2020

LIU Xiang. Preparation and tribological properties of the graphenesupported potassium borate lubricant additive [D]. Xiamen: Jimei University, 2020. DOI:10.27720/d.cnki.gjmdx.2020.000213

- [11] YANG Yanfei, WANG Xiaobo, MEI Sen, et al. Preparation and tribological properties of BN/calcium borate nanocomposites as additive in lubricating oil [J]. Industrial Lubrication and Tribology, 2018, 70(1):105. DOI: 10.1108/ilt-10-2016-0255
- [12] YANG Meini, FAN Songlin, HUANG Huiyi, et al. In-situ synthesis of calcium borate/cellulose acetate-laurate nanocomposite as efficient extreme pressure and anti-wear lubricant additives [J]. International Journal of Biological Macromolecules, 2020, 156:280. DOI: 10. 1016/j.ijbiomac.2020.04.031
- [13]黄祖强,杨美妮,张燕娟,等.基于仿生矿化的纤维素酯硼酸 钙纳米复合材料原位构筑及其摩擦学性能[C]//中国化学会第 一届全国纤维素学术研讨会论文集.成都:中国化学会,2019: 87

HUANG Zuqiang, YANG Meini, ZHANG Yanjuan, et al. In-situ construction and tribological properties of cellulose ester calcium borate nanocomposites based on biomimetic mineralization [C]// Proceedings of the First National Conference of Chinese Chemical Society on Cellulose. Chengdu; Chinese Chemical Society, 2019; 87. DOI:10.26914/c.cnkihy.2019.077097

[14] LI Wei, CHENG Zhilin, LIU Zan. Novel preparation of calcium borate/grap hene oxide nanocomposites and their tribological properties in oil [J]. Journal of Materials Engineering and Performance, 2017, 26(1):285. DOI:10.1007/s11665-016-2430-8

- [15] LIU Ping, WANG Dongyun, LI Yanbin, et al. Preparation and tribological properties of complex nanoparticle styrene/calcium borate with core-shell structure [J]. Industrial Lubrication and Tribology, 2014, 66(4):525. DOI: 10.1108/ILT-12-2011-0108
- [16] 邵毅,陈国需,程鹏,等. MoDDP 作润滑油添加剂的摩擦学性能[J].后勤工程学院学报,2016,32(3):49
 SHAO Yi, CHEN Guoxu, CHENG Peng, et al. Tribological properties of MoDDP as lubricating oil additive [J]. Journal of Logistical Engineering University, 2016, 32(3):49. DOI: 10.3969/j.issn. 1672-7843.2016.03.008
- [17] BAI Linqing, MENG Yonggang, ZULFIQAR A, et al. The synergetic effects of surface texturing and MoDDP additive applied to ballon-disk friction subject to both flooded and starved lubrication conditions [J]. Tribology Letters, 2017, 65(4):163. DOI:10.1007/ s11249-017-0949-y
- [18] HUAI Wenjuan, CHEN Xinchun, LU Fei, et al. Tribological properties of sulfur and phosphorus-free organic molybdenum compound as additive in oil [J]. Tribology International, 2020, 141:1. DOI: 10.1016/j.triboint.2019.105944
- [19] 史佩京,徐滨士,许一,等. 二烷基二硫代磷酸钼与功能添加 剂复配体系的摩擦学性能[J]. 润滑与密封, 2006, 175(3):13
 SHI Peijing, XU Binshi, XU Yi, et al. Tribological properties of molybdenum dialkyl dithiophosphate with functional additives[J]. Lubrication Engineering, 2006, 175(3):13. DOI: 10.3969/j.issn. 0254-0150.2006.03.001

[20]王任芳,李克华. TPDP 对 MoDDP 摩擦性能的影响[J]. 润滑与密封, 1999(1):22
WANG Renfang, LI Kehua. Study on the effect of TPDP on MoDDP's frictional properties [J]. Lubrication Engineering, 1999 (1):22. DOI:10.19532/j.cnki.cn21-1265/tq.1999.01.009

- [21] DU D, KIM S, SUH C, et al. Effect of MoDDP on the antioxidative properties of ZnDDP in mineral oil [J]. Lubrication Science, 2004, 16(2):183. DOI:10.1002/ls.3010160208
- [22]郭竞尧. 石墨烯负载硼酸钙润滑添加剂的摩擦学性能[D]. 厦门:集美大学, 2020
 GUO Jingyao. Tribological properties of calcium borate/graphene lubricant additive [D]. Xiamen; Jimei University, 2020. DOI:10.

lubricant additive [D]. Xiamen: Jimei University, 2020. DOI:10.
27720/d.cnki.gjmdx.2021.000187
[23]纪献兵,陈银霞,杜庆丽.核壳型硼酸钙/SiO₂复合微球的制备

及摩擦学性能研究[J]. 润滑与密封, 2015, 40(4):58 JI Xianbing, CHEN Yinxia, DU Qingli. Synthesis and tribological properties of core-shell calcium borate/SiO₂ composites [J]. Lubrication Engineering, 2015, 40(4):58. DOI: 10.3969/j.issn.0254-0150.2015.004.013

[24] 刘金亮, 李琪, 夏延秋. 油溶性有机钼与二烷基二硫代磷酸锌 (ZnDDP) 在酯类油中的协同抗磨减摩性能及机理研究[J]. 摩 擦学学报, 2009, 29(1):5

LIU Jinliang, LI Qi, XIA Yanqiu. Anti-wear and friction-reduction properties and mechanism of organic molybdenum compounds and zinc dialkyldithiopho sphate (ZnDDP) in lipid synthetic oil [J]. Tribology, 2009, 29(1):5. DOI:10.16078/j.tribology.2009.01.010

[25] 邵毅, 陈国需, 程鹏,等. 含 MoDDP 润滑油的氧化安定性及摩 擦学性能研究[J]. 石油炼制与化工, 2016, 47(7):76 SHAO Yi, CHEN Guoxu, CHENG Peng, et al. Oxidation stability and tribological properties of lubricating oil with MoDDP additive [J]. Petroleum Processing and Petrochemicals, 2016, 47(7):76. DOI: 10.3969/j.issn.1005-2399.2016.07.016

[26] 井致远, 许一, 张伟,等. 有机钼作为润滑油添加剂的研究发展 现状[J]. 材料导报, 2016, 30(13):94

JING Zhiyuan, XU Yi, ZHANG Wei, et al. Research progress of organic molybdenum as lubricating additive [J]. Materials Review, 2016, 30(13):94. DOI:10.11896/j.issn.1005-023X.2016.013. 015

[27] 栾俊吉,高建国,曹磊,等.油溶性有机钼添加剂作用下微弧氧
 化改性 TC4 钛合金的摩擦学性能[J].摩擦学学报,2022,42
 (2):294

LUAN Junji, GAO Jianguo, CAO Lei, et al. Tribological properties of micro-arc oxidized TC4 titanium alloy under the action of oil-soluble organic molybdenum additives [J]. Tribology, 2022, 42(2): 294. DOI: 10.16078/j.tribology.2021033

- [28]巴召文,黄国威,乔旦,等.石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J].摩擦学学报,2019,39(2):141
 BA Zhaowen, HUANG Guowei, QIAO Dan, et al. Preparation and tribological performance of RGO/MoS₂ as composite nano-additives
 [J]. Tribology, 2019, 39(2):141. DOI: 10.16078/j. tribology. 2018154
- [29] 杨浩鹏. H13 热作模具钢低温固体渗硼层形成机理的研究[D]. 上海:上海大学, 2015.

YANG Haopeng. The study on formation mechanism of borided layer of H13 hot work die steel with pack boriding treatment at low temperature[D]. Shanghai: Shanghai University, 2015

[30]姜信昌, 曹晓明, 韩文祥, 等. 渗硼层形成机理的探讨[J]. 金

(上接第110页)

- [11] JU Jiajun, YANG Zhigang, YI Xian, et al. Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface[J]. Physics of Fluids, 2019, 31:3. DOI: 10.1063/ 1.5094691
- [12]姚一娜,刘呈,李聪,等. 液滴撞击超疏水冷表面的反弹/黏附 特性对比研究[J]. 中国安全生产科学技术, 2021, 17(1):32
 YAO Yina, LIU Cheng, LI Cong, et al. Comparative study on rebound/adhesion characteristics of droplets impacting superhydrophobic cold surface[J]. Journal of Safety Science and Technology, 2021, 17(1):32. DOI: 10.11731/j.issn.1673-193x.2021.01.005
- [13] 刘炫麟, 王笑珊, 赵殿伟, 等. 液滴撞击超疏水-亲水混合表面的动态行为特性[J]. 南京师范大学学报, 2019, 19(2):19
 LIU Xuanlin, WANG Xiaoshan, ZHAO Dianwei, et al. Dynamic behavioral characteristics of water droplet impacting on superhydrophobic-hydrophilic surface[J]. Journal of Nanjing Normal University, 2019, 19(2):19. DOI: 10.3969 /j.issn.1672-1292.2019. 02.003
- [14] LATKA A, STRANDBURG-PESHKIN A, DRISCOLL M M, et al. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure [J]. Physical Review Letters, 2012, 109:1. DOI: 10.1103/PhysRevLett.109.054501
- [15] LEE J B, DEROME D, GUYER R, et al. Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces[J]. Langmuir, 2016, 32:1299. DOI: 10.1021/acs.langmuir.5b04557
- [16] ALMOHAMMADI H, AMIRFAZLI A. Droplet impact: viscosity and wettability effects on splashing[J]. Journal of Colloid and Interface

属科学与工艺, 1991, 10(2):80

JIANG Xinchang, CAO Xiaoming, HAN Wenxiang, et al. An investigation of the mechanism of the boronized layer formation [J]. Metal Science and Technology, 1991, 10(2):80

- [31]丁士文,李岩.水热法制备纳米 CaB₆O₁₀润滑油添加剂[J].河 北大学学报(自然科学版),2014,34(2):154
 DING Shiwen, LI Yan. Hydrothermal synthesis of nano-CaB₆O₁₀ used as lubricant additives[J]. Journal of Hebei University (Natural Science Edition),2014,34(2):154. DOI:10.3969/j.issn.1000-1565.2014.02.008
- [32]纪献兵,陈银霞. 纳米硼酸钙的水热法制备及摩擦学性能研究
 [J]. 润滑与密封, 2015, 40(7):75
 JI Xianbing, CHEN Yinxia. Hydrothermal synthesis and tribological properties study of nano-calcium borate [J]. Lubrication Engineering, 2015,40(7):75. DOI: 10.3969/j.issn.0254-0150.2015.07. 015
- [33]李岩.水热法制备纳米硼酸钙润滑油添加剂[D].保定:河北大学,2014

LI Yan. Hydrothermal synthesis of calcium borate nanoparticles used as lubricating oil additive[D]. Baoding: Hebei University, 2014. DOI:10.7666/d.D530880

[34] HUANG Ying, HAN Sheng, LIU Sizhou, et al. Preparation and tribological properties of surface-modified calcium borate nanoparticles as additive in lubricating oil[J]. Industrial Lubrication and Tribology, 2014, 66(1):143. DOI:10.1108/ilt-10-2011-0074

(编辑 杨 波)

Science, 2019, 553:23. DOI: 10.1016/j.jcis.2019.05.101

- [17] GOEDE T C, LAAN N, BRUIN K G, et al. Effect of wetting on drop splashing of Newtonian fluids and blood [J]. Langmuir, 2018, 34:5164. DOI: 10.1021/acs.langmuir.7b03355
- [18] AYTOUNA M, BARTOLO D, WEGDAM G., et al. Impact dynamics of surfactant laden drops: dynamic surface tension effects
 [J]. Experiments in Fluids, 2010, 48:50. DOI: 10.1007/s00348 -009-0703-9
- [19] ALLEN R F, FRANCIS R. The role of surface tension in splashing
 [J]. Journal of Colloid and Interface Science, 1975, 51:350.
 DOI: 10.1016/0021-9797(75)90126-5
- [20] THORODDSEN S T, SAKAKOBARA J. Evolution of the fingering pattern of an impacting drop[J]. Physics of Fluids, 1998, 10(6): 1370. DOI: 10.1063/1.869661
- $[\,21\,]\,HOLMAN$ J P. Heattransfer [$M\,].$ New York: McGrawHill, 2010:6
- [22] ACOSTA C A, BHALLA A, GUO R. Empirical and numerical determination of the freezing point depression of an unsteady flow in a scraped surface crystallizer [J]. Applied Thermal Engineering, 2020, 179:1. DOI: 10.1016/j.applthermaleng.2020.115734
- [23] RUITER J, SOTO D, VARANASI K K. Self-peeling of impacting droplets [J]. Nature Physics, 2018, 14:37. DOI: 10.1038/ NPHYS4252
- [24] WILDEMAN S, VISSER C W, SUN C, et al. On the spreading of impacting drops[J]. Journal of Fluid Mechanics, 2016, 805: 646. DOI: 10.1017/jfm.2016.584