DOI:10.11918/202203003

燃气轮机火焰筒双耳孔冷却特性的分析

徐 亮,田秋霞,席 雷,赵 旭,高建民,李云龙

(机械制造系统工程国家重点实验室(西安交通大学),西安 710049)

摘 要:为进一步提高燃烧室火焰筒的冷却性能,提出一种具有更高冷却性能的双耳孔型气膜冷却结构。采用数值模拟方法 对比分析吹风比在 0.67~2.01 时,传统圆柱孔、扩散孔、收敛孔、双耳孔的流动传热和冷却特性。计算结果表明:与其他 3 种孔 型相比,冷却壁面长径比在 0~40 时,双耳孔出口冷却气流在高温主流作用下形成的肾形涡对尺寸较小,强度较弱,对涡中心 的间距较大,且冷却气流横向分布更广,壁面换热系数比更低,提高了气膜冷却性能。在吹风比为 2.01 时,与圆柱孔相比,扩 散孔的流量系数提高了 13.7%,展向换热系数比降低了 1.5%;收敛孔的流量系数没有变化,展向换热系数比降低了 2.7%;但 双耳孔的流量系数却降低 3.1%,展向换热系数比降低了 11.25%。在吹风比为 1.33 时,与扩散孔和收敛孔相比,双耳孔的流量 系数更低,在长径比小于 40 时,双耳孔的换热系数比最低,冷却效果最好。

关键词:燃烧室火焰筒;双耳孔;冷却效率;流量系数;换热系数比

中图分类号:TK47 文献标志码:A 文章编号:0367-6234(2023)01-0055-09

Analysis of cooling characteristics of gas turbine flame tube with binaural hole

XU Liang, TIAN Qiuxia, XI Lei, ZHAO Xu, GAO Jianmin, LI Yunlong

(State Key Laboratory for Manufacturing Systems Engineering(Xi'an Jiaotong University), 710049 Xi'an, China)

Abstract: To further improve the cooling performance of the combustor flame tube, a binaural hole film cooling structure with higher cooling performance is proposed. The flow, heat transfer and cooling characteristics of traditional cylindrical hole, diffuser hole, convergent hole and binaural hole with blowing ratio from 0.67 to 2.01 were analyzed by numerical simulation. The results show that, compared with the other three film hole shapes, the aspect ratio of the cooling wall is in the range from 0 to 40, the kidney-shaped vortices formed by the cooling air flow at outlet of the binaural hole under the action of high temperature main flow are smaller in size, weaker in strength, larger in distance between the centers of the vortices, wider in transverse distribution of the cooling air flow, and lower in heat transfer coefficient on the wall, the film cooling performance is improved. When the blowing ratio is 2.01, compared with cylindrical hole, the flow coefficient of diffuser hole is increased by 13.7%, the wall heat transfer coefficient ratio is decreased by 1.5%. However, the flow coefficient of the binaural aperture decreased by 3.1% and that in the aspect of heat transfer coefficient ratio decreased by 11.25%. When the blowing ratio is 1.33, compared with diffusion hole and convergent hole, the flow coefficient of binaural hole is lower. When the slenderness ratio less than 40, the heat transfer coefficient ratio of binaural hole is the lowest and the cooling effect is the best.

Keywords: combustion chamber flame tube; binaural hole; cooling efficiency; flow coefficient; heat transfer coefficient ratio

火焰筒是燃气轮机燃烧室的核心部件,需要承 受极大的热负荷和热冲击,工作环境极其恶劣^[1-2]。 传统的圆柱孔已无法满足冷却要求^[3],为提高重型 燃机的功率和运行安全的可靠性,科研人员对孔型 进行了改进,形成以扩散型孔和收敛型孔为代表的 异形孔^[4]。扩散型孔有簸箕型孔^[5]、扇形孔^[6]、扩 展扇形孔^[7]等,对流量系数^[8]、冷却效率^[9-11]、流场 信息^[12-13]等的分析表明:扩散型孔提高冷却效果的

网络首发地址: https://kns.cnki.net/kcms/detail/23.1235.T.20220707.1701.008.html 基金项目: 国家自然科学基金(51106124);

陕西省自然科学基础研究计划青年项目(2022JQ-545); 中国博士后科学基金(2021M702573)

收稿日期: 2022-02-26; 录用日期: 2022-04-29; 网络首发日期: 2022-07-08

作者简介:徐 亮(1980—),男,副教授,博士生导师

通信作者: 席 雷, xilei100@ mail.xjtu.edu.cn

重要机理是使出口的动量分布不那么集中,掺混更 均匀,减弱了射流在主流中的穿透性,使气膜在壁面 覆盖得更均匀^[14-15];而收敛形气膜孔的流通面积虽 然减小,但在孔出口处与缝型类似,动量损失较小, 在下游仍保持较好的气膜覆盖性和冷却效果^[16-17]; 在异形孔出口位置设置凹槽,可以增加冷却气流的 横向扩散,抑制肾形涡对的产生,让冷却气流可以对 热气侧壁面进行有效的覆盖^[18-19]。

为进一步提高燃烧室火焰筒的冷却性能,针对 有限压差和冷气流量少条件下的燃烧室火焰筒,本 文提出一种出口带凹槽的新型扩散气膜孔——双耳 孔。采用数值模拟方法,分析双耳孔冷却结构的流 动传热和冷却特性,与传统圆柱孔、扩散孔和收敛孔 进行对比,以冷却效率、流量系数和表面传热系数比 为评价指标,揭示双耳孔层板冷却结构的物理机制, 为未来大功率重型燃机燃烧室研发新型高效的冷却 结构奠定技术基础。

1 研究方法

1.1 研究对象

双耳孔气膜冷却结构的物理模型具有周期性平移的特性,为简化计算过程,数值模拟时采用单孔的简化模型,数值模型如图1所示。

图1 数值模型

Fig.1 Numerical model

计算域主要包括冷流计算域、热流计算域、流体 连通域和固体域。冷流计算域和热流计算域的 Y 向 长度为 200 mm、X 向宽为 16 mm、通道 Z 向高度为 48 mm;流体连通域和固体域的 Y 向长度为200 mm、 X 向宽为 16 mm、Z 向高度为 5 mm。冷却气流和高 温气流的出入口均含有长度 300 mm 的整流段(为 直观清晰显示结构外观,图中未示出),以消除进出 口效应对数值模拟计算的影响。气膜孔中心与坐标 原点 Z 向距离0 mm, X 向距离-8 mm, Y 向距离 20 mm。

本文采用某重型燃机燃烧室火焰筒的工况,对

比基准孔、扩散孔、收敛孔、双耳孔 4 种气膜孔孔型的流动换热和冷却特性。以传统圆柱孔为基准孔, 上述 4 种气膜孔的孔型示意图如图 2 所示,均以斜 孔中心为原点, 孔径($D_1 = 1 \text{ mm}$)和倾斜角度($\theta = 30^\circ$)相同。基准孔是直径 1 mm 的单斜孔;扩散孔 出口为上底 1 mm、下底 2 mm、高 2 mm 的等腰梯形; 收敛孔出口是长 2 mm、宽 1 mm 的长方形;双耳孔 气膜孔型的设计思路如图 3 所示,以水平方向距原 点 4 mm 处为圆心画半径为 2 mm 的两个半圆,以原 点为圆心画长轴为 6 mm、短轴为 4 mm 的小椭圆, 然后以原点为圆心画长轴为 14 mm、短轴为12 mm 的大椭圆,最后将多余曲线去掉得到双耳孔孔型。

图 2 气膜孔的孔型示意图(mm)

图 3 双耳孔型的设计示意图 Fig.3 Schematic diagram of binaural hole design

1.2 计算方法及边界条件

采用商用 CFD 软件 CFX 进行数值模拟。基于 有限元的有限体积法来离散控制方程,求解三维可 压缩的雷诺时均 N-S 方程,方程中的扩散项、源项 和对流项均采用高精度离散格式进行离散,数值模 拟的整体残差水平设置为 10⁻⁶。

采用流固热耦合计算模型,规定边界上的温度 分布、边界上的热流密度分布或给出壁面温度与热 流密度之间的依存关系。数值计算存在以下耦合 方程

$$q_{\rm f} = q_{\rm s} \tag{1}$$

$$T_{\rm f} = T_{\rm s} \tag{2}$$

式中: q_{f} 为流体壁面的热流密度, q_{s} 为燃烧室壁面的 热流密度; T_{f} 为流体壁面的温度, T_{s} 为燃烧室壁面的 温度。

不考虑火焰筒壁内部能源项,热传导方程为

$$\frac{\partial(\rho cT)}{\partial t} = \frac{\partial}{\partial x_{i}} \left(k_{s} \frac{\partial T}{\partial x_{i}} \right)$$
(3)

式中: *c* 为火焰筒壁的比热容, *k*_s 为火焰筒壁的导热 系数。

本文工况:冷气侧入口总温为 740 K、总压

 $k_s = 0.017T + 6.6144$ (4) 式中 T 为金属材料的温度。

采用商业软件 ANSYS ICEM 对冷流计算域、热流计算域和固体域进行网格划分,冷气侧和热气侧的入口边界均为总温和总压入口,冷气侧和热气侧的出口边界均为速度出口。冷流计算域与固体域为流固耦合交界面,热流计算域与固体域为流固耦合交界面,冷流计算域和热流计算域通过冷气斜孔域连接。冷流计算域两侧壁面、热流计算域两侧壁面和固体域两侧壁面均采用移动周期性边界,壁面不考虑热辐射。求解模式为迎风高阶求解模式。

图 4 为流体计算域的网格划分,冷流计算域、热流计算域和不同冷气斜孔流体的计算域均采用六面体结构化网格,局部网格采用 O 型切分和半 O 型切分。由于固体计算域比较复杂,固体计算域采用四面体非结构化网格。冷流计算域、热流计算域近壁面进行网格加密处理,保证 Y⁺ < 1,设置第一层网格大小为 5 μm,网格增长比为 1.2。

(a)冷流计算域的网格

图4 流体计算域网格

Fig.4 Fluid computing area grid

1.3 数据处理

吹风比 M 的定义为

$$M = \frac{\rho_{\rm c} v_{\rm c}}{\rho_{\infty} v_{\infty}} \tag{5}$$

式中: ρ_e 为冷气密度,kg·m⁻³; v_e 为冷却孔流动速度,m·s⁻¹; ρ_{∞} 为热气密度,kg·m⁻³; v_{∞} 为热气侧速度,m·s⁻¹。

温比 T_0 的定义为

$$T_0 = \frac{T_{\rm W}}{T_{\infty}} \tag{6}$$

式中: T_w 为火焰筒壁面温度,K; T_a 为热气入口温度,K。

流量系数 C_a 是流动性能的表征,定义为

$$C_{\rm d} = \frac{m_i}{A\sqrt{2\rho_c(\Delta p)}} \tag{7}$$

式中: m_i 为气膜孔的冷气流量, $kg \cdot s^{-1}$; *A* 为气膜孔 的横截面积, m^2 ; ρ_e 为冷气密度, $kg \cdot m^{-3}$; Δp 为火 焰筒冷热侧压差, Pa_e

冷却效率 η 是冷却性能的表征,定义为

$$\eta = \frac{T_{\infty} - T_{W}}{T_{\infty} - T_{c}} \tag{8}$$

式中: T_{∞} 为热气入口温度,K; T_{w} 为热气固体壁面 温度,K,当 $T_{w} = T_{aw}$ 时,冷却效率为平均冷却效率; T_{c} 为冷气入口温度,K。

表面传热系数比可以反映引入气膜冷却后壁面 的对流传热增强的程度,其定义为

$$\frac{h}{h_0} = \frac{q/(T_{\rm W} - T_{\rm aW})}{q'_{\rm i}/(T'_{\rm W} - T'_{\infty})}$$
(9)

式中:h、h。分别代表有气膜和无气膜时的表面传热 系数, q 和qi 为有气膜和无气膜时对壁面加入的热 流密度; T_w 为无气膜时火焰筒壁面加热后的温度, $T_{a'}$ 为相应的主流温度。取 $q = q'_{i}, T_{a} = T'_{a},$ 则表面 传热系数比为

$$\frac{h}{h_0} = \frac{T'_{\rm W} - T'_{\rm o}}{T_{\rm W} - T_{\rm aW}}$$
(10)

1.4 数值方法验证

不同网格数量下热气侧壁面的平均温度 TareA 见表 1,本文网格数量分别为 293 万、352 万、 444 万、639 万、708 万,流体网格与固体网格数量的 比例为1:1,从表1中可以看出,网格数量达到350 万以后热侧固体壁面平均温度 Tavea 几乎不变,为保 证计算效率,选取350万左右网格进行模拟计算。

表1 网格收敛性验证

Tab.1 V	erification of grid convergence
表格数量/万	热气侧壁面平均温度 T _{aveA} /K
293	987.3
352	994.8
444	995.1
639	995.5
708	995.3

为验证本文计算结果的可靠性,选取 Sinha^[20] 等的实验数据进行验证,根据文献模型,设置主流速 度为20 m/s,主流温度为300 K,吹风比为1,次流温 度为250K。从图5可以看出,在吹风比为1的情况 下,数值模拟结果与实验结果吻合较好,计算平均误 差<3%,表明本文采用的数值计算方法能有效预测 气膜冷却特性。3种湍流模型对气膜孔中心线上冷 却效率η的影响不大,相差在2%以内。

 $k - \omega$ 模型是根据低雷诺数、可压缩性和剪切 流传播而改进的. $k - \omega$ 模型能够预测出自由剪切 流传播速度,如柱体、平板绕流流动和尾流等等。因 此, $k - \omega$ 模型适合壁面束缚流动和自由剪切运动, k-ω模型应用的流体计算具有更高的可信度和可 靠度,所以本文采用 $k - \omega$ 模型进行计算。

结果分析与讨论 2

2.1 流动特性分析

图 6 为吹风比 1.33 时,冷却气流在气膜孔出口 中心线附近的流线分布图(俯视图)。从图6可以看 出,基准孔、扩散孔、收敛孔和双耳孔在出口附近都存 在一定的横向扩散,使壁面温度降低,进而导致温比 降低。受出口孔型的影响,基准孔、扩散孔和收敛孔 在出口处的流线都呈收敛状态,而双耳孔的流线在出 口附近呈扩散状态,且出口附近的横向扩散程度最 大,壁面温度最低。扩散孔在出口附近形成的低温比 区域的面积最大,双耳孔只在双耳中间部分形成局部 的低温比区域,基准孔和扩散孔都在出口附近壁面形 成相对较低的低温区域,而双耳孔由于其横向扩散在 出口处的冷却范围更广,相对于其他孔型,双耳孔在 孔出口附近产生了小范围的涡旋,增强换热。

Fig.6 Streamline distribution near center line of film hole at outlet when M = 1.33图 7 为吹风比 1.33 时,不同孔型结构冷气出气 侧流向中心截面的湍动能云图。从图7可以看出,

基准孔出口处的冷气流与主流掺混剧烈,冷气流进 入主流的径向深度较长,而掺混后的冷却气流在主

· 59 ·

流的携带下只有少部分能贴近热侧壁面而起冷却作 用,大部分冷气参与主流的掺混而耗散。相对于基 准孔,扩散孔冷气与高温主流的掺混程度有所减弱, 进入主流的径向深度也有所缩短,同样只有少部分 冷气流能贴在热侧壁面流动。收敛孔结构的冷气 流,可以大大降低与主流的掺混范围和强度,进入主 流的径向深度较小,不过可以明显看出大部分冷气 流耗散在高速主流中。在掺混强度方面,双耳孔结 构的冷气流与主流的掺混强度要大于扩散孔和收敛 孔,而小于基准孔;在冷气流进入主流的径向深度 上,双耳孔与收敛孔相近,但是双耳孔的冷气流几乎 全部沿着高温侧贴壁流动,这样对热侧壁面能有较 好的覆盖作用。

图 7 M=1.33 时不同孔型冷气出气侧流向中心截面的湍动 能云图

Fig.7 Turbulent kinetic energy nephogram of central section of outlet side flow of cold gas in different apertures when M = 1.33

图 8 为吹风比 1.33 时,不同孔型结构冷气出气侧 流向中心截面的流线分布图。从图 8 可以看出,基准 孔、扩散孔、收敛孔和双耳孔在出口附近都对主流存在 一定的穿透作用。基准孔的穿透力最大,既干扰主流 气流的流动,又不利于提升冷却气流的贴壁面效果,使 热气侧的壁面温度升高;扩散孔和收敛孔的穿透程度 相对于基准孔有一定范围的减小,由于孔出口面积减 小,低温比区域的深度有所增加;双耳孔的穿透力最 小,且在出口处有漩涡生成,有助于提升冷却气流的贴 壁面效果,使热气侧的壁面温度降低,进而使 T₀降低。

冷却气流通过基准孔、扩散孔、收敛孔和双耳孔 射出后与高温主流发生强烈的卷吸掺混,从而形成 复杂的流场涡系结构,其中肾形涡对占据主导作用。 图 9 为 *M* = 1.33 时,不同孔型结构出气侧的流场涡 结构及温度场分布图,并给出了基准孔、扩散孔、收 敛孔和双耳孔沿流向方向的涡系发展过程,肾形涡 对的尺寸沿流向方向逐渐大,强度逐渐降低。许多 研究表明在肾形涡对的作用下,在气膜孔出口位置 附近,冷却气流对热气侧表面有一定的覆盖作用。 与基准孔、扩散孔、收敛孔相比,双耳孔在 Y/D₁ = 0~40之间时,肾形涡对的尺寸较小,强度较弱,对 涡中心的间距也逐渐增大。所以,与基准孔、扩散 孔、收敛孔相比,双耳孔冷却气流与主流的卷吸掺混 程度相对较低,从而使冷却气流能够在固体热气侧 表面贴壁流动(从图 8 流线可以看出)。同时,双耳 孔出口的冷却气流沿横向的分布更广,热气侧表面 的温度大幅度降低,提高了冷却性能。

图 8 M=1.33 时不同孔型冷气出气侧流向中心截面的流线 分布图

Fig. 8 Streamline distribution diagram of central section of outlet side flow of cold gas in different apertures when M = 1.33

图 10 为吹风比 1.33 时,不同孔型结构出气侧沿 流向各展向截面的湍动能云图,从图 10 中可以看出, 基准孔、扩散孔、收敛孔和双耳孔随 Y/D₁ 的增大,湍 动能有明显降低,且漩涡位置有所下降。与基准孔、 扩散孔和收敛孔相比,双耳孔在出气侧的湍动能分布 和流线都产生变化,其横向扩散区域更广,旋涡强度 更小,高湍动能区域的范围更小,冷却气流的覆盖面 积更大,热气侧壁面的冷却效率更高。随着 Y/D₁ 的 增大,基准孔、扩散孔和收敛孔的湍动能逐渐减弱,对 涡中心出现略微地分离,而双耳孔在出气侧的湍动能 减弱程度较慢,且对涡中心分离明显,进一步增大了 冷却气流的覆盖面积,从而提高了热气壁面的冷却 效率。

从图 11 可以看出,在同一吹风比下,扩散孔的 C_a 明显高于基准孔、收敛孔、双耳孔。随吹风比增 大,扩散孔、收敛孔、双耳孔的 C_d 逐渐减小,而基准 孔的 C_d 变化不显著。在中等吹风比情况下,双耳孔 与基准孔的 C_d 较为接近;在高吹风比情况下,双耳 孔比基准孔的 C_d 更低。在M = 0.67时,与基准孔相 比,扩散孔、收敛孔和双耳孔的 C_d 分别提高了 13.7%、7.6%和3.1%;在M = 1.33时,与基准孔相比,扩散孔、收敛孔和双耳孔的 C_d 分别提高了13.4%、7.1%和3.2%;在M = 2.01时,与基准孔相比,扩散孔的 C_d 提高了13.7%,收敛孔的 C_d 没有变化,但双耳孔的 C_d 降低3.1%。

Fig.9 Flow field vortex structure and temperature field distribution at outlet side of different pass patterns when M = 1.33

图 10 M=1.33 时,不同孔型结构出气侧沿流向各展向截面 的湍动能云图

Fig.10 Turbulent kinetic energy nephogram of outlet side along flow direction cross-sections of different pass patterns when M = 1.33

2.2 换热特性分析

图 12 为 *M* = 1.33 时,不同孔型气膜孔出口热气 侧壁面的冷却效率云图,从图 12 可以看出,不同孔型 气膜孔出口热气侧壁面的冷却效率云图整体呈现出 一定的对称性,与基准孔相比,扩散型孔、收敛型孔和 双耳孔出口的冷却效率有显著提升,低冷却效率区域 的面积减小,且起始位置逐渐后移。双耳孔结构出口 的冷却效率最高,与其他结构相比,冷却效率没有低 于 0.447 的区域,同时横向扩散范围增大,下游换热性 能提高,因此热气侧壁面的冷却效率提高。

图 12 M=1.33 时不同孔型出口热气侧壁面的冷却效率分 布云图

Fig. 12 Cooling efficiency distribution nephogram of hot gas sidewall of different pass outlets when M = 1.33

图 13 为吹风比在 0.67~2.01 情况下 4 种孔型 的气膜孔中心线的冷却效率分布曲线,图 14 为吹风 比在 0.67~2.01 情况下 4 种孔型的气膜孔展向 (Y/D₁ = 5)的冷却效率分布曲线。从图中可以看 出,在 Y/D₁ = 10~40 之间时,双耳孔的气膜冷却效 率整体趋势高于基准孔、扩散孔和收敛孔,主要是因 为双耳孔在出口处形成的冷气覆盖面比其他 3 种孔 型更广,冷却效果更好,而收敛孔的冷却效率又高于 基准孔和扩散孔;在 M = 1.33 时,双耳孔的气膜冷却 效率提升效果最为显著,在靠近出口位置的冷却效果 明显更高,且在远离出口位置的气膜冷却效果也高于 基准孔和扩散孔,这是由于冷却气流在双耳孔出口位 置处的横向扩散和强度较弱的肾形涡对共同作用的 结果。在展向方向双耳孔的气膜冷却效率明显高于 其他3种气膜孔,气膜冷却效率按双耳孔、收敛孔、扩 散孔、基准孔依次降低,随吹风比的增大,4种气膜孔 的冷却效率都有一定程度的提高。在气膜孔中心线 上的气膜冷却效率最高,向两侧依次降低。

图 13 M=0.67~2.01 时 4 种孔型的气膜孔中心线的冷却效率分布曲线

Fig.13 Cooling efficiency distribution curve of film hole center line of four pass patterns when M = 0.67-2.01

图 14 M=0.67~2.01 时 4 种孔型气膜孔的展向(Y/D1=5)冷却效率分布曲线

Fig.14 Cooling efficiency distribution curve of four film hole patterns along developing direction ($Y/D_1 = 5$) when M = 0.67-2.01

从图 15 可以看出,在同一吹风比下,双耳孔出 气侧的 η 明显优于基准孔、扩散孔和收敛孔。随着 吹风比增大,基准孔、扩散孔、收敛孔 和双耳孔的 η 显著提高,但 η 的增幅变小。在 M = 0.67 时,与基准 孔相比,双耳孔出气侧的 η 提高了 11.7%,但扩散孔 和收敛孔出气侧的 η 分别降低了 4.6% 和 6.7%。在 M = 1.33 时,与基准孔结构相比,双耳孔出气侧的 η 提高了 7.5%,但扩散孔和收敛孔出气侧的 η 分别降 低了 3.2% 和 4.4%。在 M = 2.01 时,与基准孔相比, 扩散孔和双耳孔出气侧的 η 分别提高了 1.0% 和 8.7%,但收敛孔出气侧的 η 没有变化。

在 M = 1.33 时,双耳孔的 C_{d} 比基准孔、扩散孔、 收敛孔更低,但双耳孔出气侧的 η 明显优于基准孔、 扩散孔、收敛孔。双耳孔的 C_{d} 仅提高了 3.2%,但是 η 提高了 7.5%。

图 15 不同吹风比下不同孔型气膜孔出气侧 η 变化曲线

Fig.15 Variation curve of η at outlet side of film hole with different apertures under different blowing ratios

图 16 是 4 种孔形的气膜孔出口中心线壁面传 热系数比 *h*/*h*₀ 沿流向的分布情况,图 17 是 *Y*/*D*₁ = 5 截面 4 种孔形表面传热系数比沿展向的分布情况。 从图 16 和 17 可以看出,M = 0.67时,在 $Y/D_1 = 0 \sim 80$ 区域,在流向方向双耳孔出口壁面传热系数 比明显低于其他 3 种气膜孔,冷却效果更好;双耳孔 展向方向的壁面传热系数比明显低于其他 3 种孔 型。 $Y/D_1 > 80$ 时,双耳孔出口的壁面传热系数比 高于扩散孔,但低于基准孔和收敛孔。随吹风比的 增大,双耳孔与其他孔型表面传热系数比的交点位 置提前;在气膜孔下游区域,双耳孔出口壁面传热系 数比较高,且趋势逐渐平缓,与其他3种气膜孔的差 值逐渐减小;当*M* = 0.67时,基准孔、扩散孔和收敛 孔流向和展向方向的表面传热系数比依次降低,但 相差不大。

Fig.16 Heat transfer coefficient ratio curves of center line wall of four pass patterns when M = 0.67-2.01

图 17 M=0.67~2.01 时 Y/D1=5 截面 4 种孔形表面传热系数比沿展向的分布曲线

Fig.17 Distribution curve of surface heat transfer coefficient ratio of four pass patterns of $Y/D_1 = 5$ cross-section along developing direction when M = 0.67-2.01

3 结 论

本文利用 CFD 软件分析了在不同吹风比下传统圆柱孔、扩散孔、收敛孔和双耳孔出气侧壁面气膜冷却的流动换热和冷却特性,揭示双耳孔气膜冷却的物理机制。冷却气流通过基准孔、扩散孔、收敛孔和双耳孔等气膜孔射出后与高温主流发生卷吸掺混,形成复杂的流场涡系结构,其中肾形涡对占据主导作用。研究结果表明:

1) 肾形涡对的尺寸沿流向方向逐渐增大,强度 逐渐降低,在气膜孔出口位置附近,冷却气流对热气 侧壁面有较好的覆盖作用。与基准孔、扩散孔、收敛 孔相比,双耳孔在 Y/D₁ = 0 ~ 40 时,肾形涡对的尺 寸较小,强度较弱,对涡中心的间距也逐渐增大。双 耳孔的冷却气流沿展向的分布更广,热气侧壁面温 度大幅度降低,表面传热系数比低,冷却性能提高。

2) 在 M = 2.01 时,与基准孔相比,扩散孔的 C_d 提高了 13.7%,展向 h/h_0 降低了 1.5%;收敛孔的 C_d 没有变化,展向 h/h_0 降低了 2.7%;但双耳孔的 C_d 却 降低 3.1%, 展向 h/h₀ 降低了 11.25%。

3) 在 *M* = 0.67 ~ 2.01, *Y*/*D*₁ = 10 ~ 40 之间时, 双耳孔的气膜冷却效率整体趋势高于基准孔、扩散 孔和收敛孔,收敛孔的气膜冷却效率明显高于基准 孔和扩散孔,这是由于冷却气流在双耳孔出口位置 处的横向扩散和强度较弱的肾形涡对共同作用的 结果。

4) 在 M = 1.33 时,出气侧双耳孔结构比扩散孔 和收敛孔的 C_d 更低,但高于基准孔,在 $Y/D_1 < 40$ 时,双耳孔的 h/h_0 最低。双耳孔阵列排布的流向范 围在 $Y/D_1 < 40$ 时效果更好。出气侧展向方向双耳 孔的 η 明显优于基准孔、扩散孔、收敛孔。

参考文献

[1] 冯珍珍,田晓晶,李洋,等.某重型燃气轮机燃烧室冲击冷却特性研究[J].汽轮机技术,2020,62(4):275
FENG Zhenzhen, TIAN Xiaojing, LI Yang, et al. Research of impingement coding performance for a heavy-duty gas turbine combustor[J]. Turbine Technology, 2020, 62(4):275. DOI: 10. 3969/j.issn.1001-5884.2020.04.010

 [2] 刘健鑫,任荣社,陈海龙.燃气轮机燃烧室冷却技术研究[J].内 燃机与配件,2018(19):37
 LIU Jianxin, REN Rongshe, CHEN Hailong. Study on cooling technology of combustor of gas turbine [J]. Internal Combustion Engine

& Parts, 2018(19):37. DOI: 10.3969/j.issn.1674-957X.2018.19. 015

[3] 王浩.燃气轮机燃烧室火焰筒壁冲击射流冷却研究[D].大连:大连理工大学,2019

WANG Hao. Study on impingement jet cooling in gas turbine combustor liner[D]. Dalian: Dalian University of Technology,2019

- YUEN C H N, MARTINEZ-BOTAS R F, WHITELAW J H. Film cooling effectiveness downstream of compound and fan-shaped holes
 [C]// ASME Turbo Expo 2001: Power for Land, Sea, and Air. New Orleans: ASME,2001:0131. DOI: 10.1115/2001-GT-0131
- [5] YU Y, YEN C H, SHIH TI P, et al. Film cooling effectiveness and heat transfer coefficient distributions around diffusion shaped holes
 [J]. Heat Transfer, 2002, 124 (5): 820. DOI: 10.1115/1. 1418367
- BAI J T, ZHU H R, LIU C L. Film cooling characteristic of doublefan-shaped film cooling holes [C]// ASME Turbo Expo 2009: Power for Land, Sea, & Air. Orlando: ASME, 2009: 185. DOI: 10.1115/GT2009-59318
- [7] 王春娟,董若凌,施红辉,等.不同孔型平板气膜冷却特性的数值 模拟[J].浙江理工大学学报,2012,29(2):225
 WANG Chunjuan, DONG Ruoling, SHI Honghui, et al. Numerical simulation of flat plate film cooling field using different shape holes
 [J]. Journal of Zhejiang Sci-Tech University, 2012, 29(2): 225. DOI: 10.3969/j.issn.1673-3851.2012.02.016
- [8] BUNKER R S. Film cooling effectiveness due to discrete holes within a transverse surface slot [C]// ASME Turbo Expo: Power for Land, Sea, & Air. Amsterdam: ASME, 2002: 129. DOI: 10.1115/ GT2002-30178
- [9] GIEBERT D, GRITSCH M, SCHULZ A, et al. Film-cooling from holes with expanded exits: A comparison of computational results with experiments [C]//ASME International Gas Turbine, Aeroengine Congress, Exhibition. Orlando: ASME,1997:163. DOI: 10. 1115/97-GT-163
- [10] THOLE K, GRITSCH M, SCHULZ A, et al. Flowfield measurements for film-cooling holes with expanded exits [J]. Journal of Turbomachinary, 1998, 120: 327. DOI: 10.1115/1.2841410
- [11] GRITSCH M, SCHULZ A, WITTIG S. Discharge coefficient measurements of film-cooling holes with expanded exits [J]. Journal of Turbomachinary, 1998, 120 (3): 557. DOI: 10.1115/1. 2841753
- [12]徐虹艳,张靖周,姚玉.涡轮叶片非对称扇形气膜孔冷却特性数

值研究[J].机械工程学报,2011,47(18):152

XU Hongyan, ZHANG Jingzhou, YAO Yu. Numerical investigation on film cooling performance of turbine blade with asymmetrical fan-shaped holes[J]. Journal of Mechanical Engineering, 2011, 47 (18):152.DOI: 10.3901/JME.2011.18.152

- [13] HAVEN B A, YAMAGATA D K, KUROSAKA M, et al. Antikidney pair of vortices in shaped holes and their influence on film cooling effectiveness [C]//ASME International Gas Turbine & Aeroengine Congress & Exhibition. Orlando: ASME, 1997: 045. DOI: 10.1115/97-GT-045
- [14] FURUKAWA T, LIGRANI P M. Transonic film cooling effectiveness from shaped holes on a simulated turbine airfoil [J]. Journal of Thermophysics and Heat Transfer, 2002, 16(2): 228. DOI: 10. 2514/2.6672
- [15] WAGNER G, OTT P, VOGEL G, et al. Leading edge film cooling and the influence of shaped holes at design and off-design conditions
 [C]// ASME Turbo Expo 2007: Power for Land, Sea, and Air. Montreal: ASME, 2007:27715. DOI: 10.1115/GT2007-27715
- [16]杨璐璐,卢朝阳.出流孔倾角对层板冷却结构流动与换热特性的影响[J].重庆理工大学学报(自然科学版),2015,29(11):66
 YANG Lulu, LU Zhaoyang. Influence of flow angle of hole on heat transfer and flow characteristics of lamilloy configuration [J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(11): 66. DOI:10.3969/j.issn.1674-8425(z).2015.11. 011
- [17] SARGISON J E, GUO S M, OLDFIELD M L G, et al. A converging slot-hole film-cooling geometry:part 1: low-speed flat-plate heat transfer and loss [C]// ASME Turbo Expo: Power for Land, Sea, and Air. Amsterdam: ASME,2001:0126. DOI: 10.1115/1.1459735
- [18]魏建生.高效异型气膜冷却结构流动与换热特性研究[D].西安:西北工业大学, 2018.
 WEI Jiansheng. Study on the flow and heat transfer characteristics of high efficiency shaped film cooling structures [D]. Xi'an: Northwestern Polytechnical University, 2018.
- [19]朱延鑫,谭晓茗,郭文,等.出流孔型对平板气膜冷却影响机理的研究[J].推进技术,2013,34(4):499
 ZHU Yanxin, TAN Xiaoming, GUO Wen, et al. Numerical simulation on effects of different film cooling holes on plate [J]. Journal of Propulsion Technology, 2013, 34(4):499. DOI: 10.7682/j.issn. 1673-1522.20130411
- [20] SINHA A K, BOGARD D G, CRAWFORD M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio [J]. Journal of Turbomachinery, 1991, 113(3):442. DOI: 10.1115/1.2927894

(编辑 杨 波)