Author Name | Affiliation | Postcode | Fuchenglong Zhao* | 1. Shenyang Institute of Automation, Chinese Academy of Sciences,Shenyang 110000,China 2. State Key Laboratory of Robotics, Chinese Academy of Sciences,Shenyang 110000,China;3. University of Chinese Academy of Science, Beijing 101408,China | 110000 | Junlin Li | 1. Shenyang Institute of Automation, Chinese Academy of Sciences,Shenyang 110000,China 2. State Key Laboratory of Robotics, Chinese Academy of Sciences,Shenyang 110000,China | 110000 |
|
Abstract: |
An innovative design method is outlined for the pointing control mechanism of large space flexible antennas. This method focus on enhancing the accuracy and stability that are crucial for large spacecraft applications, such as space solar power stations. Utilizing potential energy function analysis, the dynamics of the antenna are modeled, treating it as an equivalent n-joint robotic arm. This approach simulates the rigid-flexible coupling effect through joint angle manipulations. The proposed HJI(Hamilton-Jacobi-Inequality) sliding mode robust control integrates HJI principle, dissipative system theory, and sliding mode control, offering improved pointing accuracy and robustness. Simulation results underscore the superiority of HJI sliding mode robust control over traditional PD(proportional-derivative) control in initial response, precision, and control smoothness, albeit at the cost of higher control torque requirements. This research underscores the potential of HJI sliding mode robust control in facilitating precise pointing control for future large space structures, enabling efficient space missions and reliable energy transmission. |
Key words: Large flexible antennas ground-pointing control strong nonlinearity sliding mode robust control Hamilton-Jacobi inequality |
DOI:10.11916/j.issn.1005-9113.24035 |
Clc Number:[V443+.4],[V448.2],[V412.4+2],[O231.2],[TP273+.2] |
Fund: |
|
Descriptions in Chinese: |
本文概述了一种大型空间柔性天线指向控制机构的创新设计方法,重点关注提高大型航天器应用(如太空太阳能发电站)至关重要的准确性和稳定性。本文利用势能函数分析对天线动力学进行建模,将其视为等效的n关节机器人手臂。这种方法通过关节角度操作模拟刚柔耦合效应。所提出的HJI(Hamilton-Jacobi-Inequality)滑模鲁棒控制融合了HJI原理、耗散系统理论和滑模控制,提供了更高的指向准确性和鲁棒性。仿真结果表明,尽管HJI滑模鲁棒控制在控制扭矩要求方面较高,但在初始响应、精度和控制平稳性方面优于传统的PD(比例-微分)控制。本研究强调了HJI滑模鲁棒控制在未来大型空间结构精确指向控制方面的潜力,有助于实现高效的空间任务和可靠的能量传输。 |