Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2025 Vol.32
  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
Back Issue    Advanced Search
This paper has been: browsed 48times   downloaded 12times  
Shared by: Wechat More
Machine-Learning-Improved Analytic Continuation for Quantum Impurity Model
Author NameAffiliationPostcode
Sheng-Yan Li Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China 102206
Liang Chen* Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China 102206
Abstract:
The analytic continuation serves as a crucial bridge between quantum Monte Carlo calculations in imaginary-time formalism—specifically, the Green"s functions—and physical measurements (the spectral functions) in real time. Various approaches have been developed to enhance the accuracy of analytic continuation, including the Padé approximation, the maximum entropy method, and stochastic analytic continuation. In this work, we employ different deep learning techniques to investigate the analytic continuation for the quantum impurity model. A significant challenge in this context is that the sharp Abrikosov-Suhl resonance peak may be either underestimated or overestimated. We fit both the imaginary-time Green"s function and the spectral function using Chebyshev polynomials in logarithmic coordinates. We utilize full-connected networks, convolutional neural networks, and residual networks to address this issue. Our findings indicate that introducing noise during the training phase significantly improves the accuracy of the learning process. The typical absolute error achieved is less than 10-4 orders. These investigations pave the way for machine learning to optimize the analytic continuation problem in many-body systems, thereby reducing the need for prior expertise in physics.
Key words:  machine learning  analytic continuation  neural networks
DOI:10.11916/j.issn.1005-9113.24027
Clc Number:Grant No. 12174101
Fund:
Descriptions in Chinese:
  解析延拓是虚时间形式的量子蒙特卡罗计算(格林函数)和实时物理测量(谱函数)之间的重要桥梁。改进解析延拓的方法有:Padé近似法、最大熵法和随机解析延拓。在这项工作中,我们使用不同的深度学习方法来研究量子杂质模型的解析延拓。这个问题的一个关键难题是尖锐的Abrikosov-Suhl共振峰能否被准确评估。本文采用对数坐标下的切比雪夫多项式拟合虚时格林函数和谱函数,利用全连通网络、卷积神经网络和残差网络进行求解。我们发现在训练阶段引入噪声显著改善了学习过程。获得的典型绝对误差小于0.0001。这些研究为机器学习优化多体系统中的解析延拓问题铺平了道路,消除了对物理专业知识的需求。

LINKS