融合大气光值-图估计的无人机航拍图像去雾
CSTR:
作者:
作者单位:

(1.长安大学 电子与控制工程学院,西安 710064;2.西安市智慧高速公路信息融合与控制重点实验室(长安大学),西安 710064)

作者简介:

黄鹤(1979—),男,教授,博士生导师

通讯作者:

黄鹤,huanghe@chd.edu.cn

中图分类号:

TP391.4

基金项目:

国家自然科学基金面上项目(52172379);国家重点研发计划(2021YFB2501200);陕西省重点研发计划(2021SF-483);陕西省自然科学基础研究计划(2021JM-184);长安大学中央高校基本科研业务费专项(1,1);西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金(300102321502)


UAV aerial image dehazing by fusion of atmospheric light value and graph estimation
Author:
Affiliation:

(1.School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China; 2.Xi’an Key Laboratory of Intelligent Expressway Information Fusion and Control (Chang’an University), Xi’an 710064, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有去雾算法大都存在复原图像亮度低、天空明显色彩失真等问题,提出了一种融合大气光值-图估计的无人机航拍图像去雾方法。首先,根据颜色衰减先验理论获取景深图像,将景深图像内偏差最小区域均值作为大气光值;其次,设计了一种自适应随机游走聚类方法用来估计大气光图,通过自适应随机游走算法将图像聚类为N个子区域,对子区域前0.1%像素求均值作为区域大气光值,将区域大气光值组合并通过引导滤波对其进行细化,获得大气光图;然后,通过融合大气光值-图估计方法将两种大气光估计融合为新的大气光图,作为更加准确的大气光估计;利用雾霾线先验方法获得透射率,同时提出一种暗补偿方法对其进行优化,提高透射率精度;最后,根据大气散射模型,利用求得的融合大气光图和优化透射率,得到清晰的复原图像。实验结果表明,相对于比较算法,提出的算法的复原图像在信息熵、平均梯度、模糊系数及对比度上分别提升1.1%、6.3%、8.5%、6.4%,主观视觉效果更好,信息更加丰富。

    Abstract:

    In view of the problems of low brightness and obvious color distortion of the sky in restored images in most existing algorithms for image dehazing, a haze removal method for UAV aerial images based on atmospheric light value and graph estimation was proposed. First, the depth-of-field image was obtained according to the color attenuation prior theory, and the mean value of the region with the minimum deviation in the depth-of-field image was taken as the atmospheric light value. Then, a random walk clustering method was designed to estimate the atmospheric light map. The random walk algorithm was used to cluster the image into N sub-regions, and the mean value of the first 0.1% pixels of the sub-regions was taken as the regional atmospheric light value, which was then combined and refined by guided filtering to obtain the atmospheric light map. Next, the two atmospheric light estimators were fused into a new atmospheric light map with atmospheric light valuegraph estimation, which is a more accurate atmospheric light estimator. The transmittance was obtained by haze-lines prior method, and a dark compensation method was proposed to improve the transmission accuracy. Finally, according to the atmospheric scattering model, a clear restored image was obtained based on the fused atmospheric light map and optimized transmittance. Experimental results show that compared with other algorithms, the proposed algorithm improved the information entropy, mean gradient, blur coefficient, and contrast by 1.1%, 6.3%, 8.5%, and 6.4%, respectively, with better subjective visual effect and more abundant information.

    参考文献
    相似文献
    引证文献
引用本文

黄鹤,李战一,胡凯益,王会峰,茹锋,王珺.融合大气光值-图估计的无人机航拍图像去雾[J].哈尔滨工业大学学报,2023,55(5):88. DOI:10.11918/202111001

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-25
  • 出版日期:
文章二维码