极地低温环境结冰预探测方法与防除破冰技术研究进展
doi: 10.11918/202407059
邵苛苛1 , 宋孟杰1 , 沈俊1 , 蔡标华2 , 甄泽康1 , 石含1 , 张旋1 , 张龙1
1. 北京理工大学 机械与车辆学院,北京 100081
2. 武汉第二船舶设计研究所,武汉 430205
基金项目: 国家自然科学基金(52076013,52406007,52306003) ; 北京市自然科学基金(3212024,3244046,3232032) ; 防除冰重点实验室项目 (IADL20230113,IADL20220304) ; 北京市科协青年人才托举工程(BYESS2023352)
Research progress on icing prediction and detection methods, and anti / de-icing and ice-breaking technologies in polar low-temperature environments
SHAO Keke1 , SONG Mengjie1 , SHEN Jun1 , CAI Biaohua2 , ZHEN Zekang1 , SHI Han1 , ZHANG Xuan1 , ZHANG Long1
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 , China
2. Wuhan Second Ship Design Research Institute, Wuhan 430205 , China
摘要
极地低温、高湿、高风速、高盐度、极昼极夜等极端环境易导致船舶、低空飞行器等近海面装备表面结冰,严重影响装备正常运行。为应对极地复杂环境带来的冰害,国内外学者围绕结冰预测探测方法、防除破冰技术等开展了大量对比实验与数理建模研究,对既有涉冰研究进展进行了分析总结。结果表明:结冰预测方法主要基于经验、理论与数值 3 种模型,其中,理论模型准确度小于 50% ,而数值模型准确度大于 60% ;结冰探测主要采用观测与检测两种方法,其中,平均结冰厚度的观测法与检测法测量精度分别可达 ± 0. 038 mm 与 ± 0. 05 mm;极地装备表面的覆冰源自海浪飞沫、雨雾飞沫与大气,其中,海浪飞沫占比高达 90% ;防除冰技术有被动式和主动式两种,前者能耗低且寿命短,后者效率高但装置复杂,两者结合仍是未来发展趋势;极地水上船舶破冰主要采用冲撞、顶撞与首压技术,冰下潜艇破冰则采用机械挤压、鱼雷爆破与激光融冰等直接破冰或 “先弱冰再破冰”的耦合技术。基于本文对极地低温环境结冰预探测方法与防除破冰技术的分析,进一步提出了既有方法与技术的优化方向,以期为复杂低温环境中载运装备及工程设备的冰灾护控技术发展提供参考与借鉴。
关键词
Abstract
Extreme environments such as low temperature, high humidity, high wind speed, high salinity, extreme daytime, and extreme nighttime can easily lead to icing on the surface of ships, low-altitude vehicles and other near-sea equipment, which seriously affects the normal operation of such equipment. To cope with the ice hazards brought by the complex environments, scholars both domestically and internationally have conducted numerous comparative experiments and mathematical modeling studies on icing detection and prediction methods, as well as anti-icing, de-icing, and ice-breaking technologies. This paper provides an analysis and summary of the existing research progress in the field of ice-related studies. Results show that icing prediction methods primarily rely on empirical, theoretical and numerical models, with theoretical models having an accuracy below 50% while numerical models achieve an accuracy above 60% . Ice detection mainly adopts two methods of observation and detection, in which the measurement accuracy of the average ice thickness of the observation method and detection method can reach ± 0. 038 mm and ± 0. 05 mm, respectively. Ice cover on the surface of polar equipment originates from wave droplets, rain droplets and the atmosphere, with wave droplets accounting for up to 90% . Ice prevention technologies include passive and active methods, with the former having low energy consumption and short service life, and the latter being more efficient but with complex device setups. The combination of both remains a future development trend. In polar regions, ice-breaking for waterborne vessels primarily involves ramming, crushing, and pressure ridging techniques, while ice-breaking for submarines beneath the ice utilizes mechanical squeezing, torpedo blasting, laser ice melting, and other direct ice-breaking methods or coupled techniques such as " weak ice first, then ice-breaking " coupling techniques. Based on the analysis of icing prediction and detection methods, and anti-icing, de-icing and ice-breaking technologies in polar low-temperature environments, further optimization directions for existing methods and technologies are proposed. These insights aim to provide references for the development of ice disaster protection and control technology for the carrier equipment and engineering equipment in complex low-temperature environments.
随着全球气候变暖和海冰融化,极地的资源、地缘政治、军事、科研、航运优势等价值逐渐引起美、俄等大国高度重视[1]。然而,极地区域气候极端,大部分地区常年被冰雪覆盖[2]。南北极与北京气候对比如图1(a)所示。南北两极冬季平均温度低至-50℃和-18℃,远低于北京的-3℃,且风速也较高。此外,极地区域存在高盐度和极昼极夜的情况。极端气候会降低设备可靠性,影响人员工作效率乃至危害生命[3],导致巨大经济损失。如图1(b)所示,冰雪冷冻灾害每年给中国带来高达数十亿元的经济损失[4]。常规应对冰害的技术和设备易受极端环境影响而难以发挥作用,给商业和科考活动等带来了挑战[5]。本文总结了既有各种应对冰害的技术和方法,以期为极端低温环境导致冰害开发应对新技术和方法提供参考。
1极地气候及冰雪冷冻灾害造成的损失
Fig.1Impacts of polar climate and frozen ice and snow disasters
极地极端环境易造成船舶等载运装备表面结冰,影响装备正常运行[6-7]。如船舶航行时,海水溅到低温的船体或甲板时会凝固,并在表面形成光滑的冰层。此外,空气中的过冷水滴碰到甲板等低温表面也会发生结冰。这些冰会影响设备工作,威胁船舶航行安全。海上平台的积冰很重,积累到一定量后可能引发坍塌事故[8-9]。同时,冰中盐分会腐蚀设备和船体[10-11]。海风吹拂后的表面更加光滑,也易导致工人滑倒和威胁直升机起降安全。
极端低温使海水很容易结冰,有些地区终年被厚实的冰层覆盖。与淡水结冰不同的是,海水温度降至冰点时,部分海水开始成核结冰,然后盐分从冰中析出,在冰中形成蜂窝状结构[12-13]。随着海水结冰和盐分析出,冰中微孔中的海水盐度增加。微孔中海水的盐度高导致凝固温度低,不易冻结。因此,刚形成的海冰内部含有大量气泡、盐水和盐晶体颗粒。在重力和温差的作用下,气泡和盐水会发生迁移导致海冰形态和结构发生变化[14-15]。为表征海冰的成分随着时间推移而发生的动态变化,世界气象组织根据海冰的形成时间和形态对其进行分类。不同的海冰类型和相应的厚度如图2所示[16-17]
新冰是海冰初始阶段的总称[18],由海水直接冻结或由融雪形成的呈针状、片状、油脂状或海绵状,结构相对松散的冰。冰皮是由新冰冻结或海水直接冻结形成的薄冰层,其表面光滑、湿润、有光泽,厚度约5 cm,并且可随风波动,易被风浪击碎。厚度小于 10 cm 的弹性薄冰壳称为尼罗冰,表面无光泽,在波浪和外力作用下容易弯曲和破碎,并能产生交叉重叠。莲叶冰是一种直径在 30~300 cm、厚度小于 10 cm的圆形冰块,边缘因相互碰撞而凸起。灰冰是由尼罗冰形成的厚度为 10~15 cm、颜色为灰色的平坦冰层,其弹性不如尼罗冰,很容易被波浪击碎。当灰冰的厚度达到 15~30 cm 时,就会变成灰白冰。当灰白冰的积累厚度达到 30 cm 以上时,就会形成表面粗糙、颜色呈乳白色的白冰。除了根据冰的厚度和颜色进行分类外,还可根据冰的形成时间将冰分为新冰、初期冰、当年冰和旧冰[19-20]。为定量衡量海面海冰存在程度对船舶航行的影响,世界气象组织将视野范围内海面上海冰覆盖面积的相对大小定义为冰密集度,并以十分度量[21]。冰密集度的大小和船舶可航行性的关系如表1所示。当密度大于 1 / 10 时,会对通航产生影响。当密度超过 9 / 10 时,就需要破冰航行。
2世界气象组织对海冰的分类
Fig.2World Meteorological Organization classification of sea ice
1海面冰密集度分类及对船舶通航能力影响
Tab.1 Effect of ice density on sailing capacity
为应对极地环境所导致的冰害问题,本文将从结冰探测和预测技术[22-23]、防除冰方法[24-25]、破冰措施[26-27]三方面总结分析既有研究成果。本研究的思路如图3所示,探测和预测是进行后续操作的前提,了解物体结冰真实情况,为后续的防除冰和破冰操作提供指导。防除冰和破冰是应对冰害的直接手段,对结冰机制的深入研究是开发新技术的前提。因此,了解预探冰、结冰、防除冰和破冰之间关系和他们的技术发展现状可为开发高效应对极地冰害的技术和方法提供参考和借鉴。
3本研究内容概况
Fig.3Overview of research content
1 结冰预测和探测技术
1.1 结冰预测技术
船舶结冰预测经历了几十年的发展。开发的结冰模型大致可分为经验模型、理论模型和数值模型[28-29]。经验模型是利用基于海洋气象条件参数与实际结冰状况建立的统计关系。最早的船舶结冰预测主要使用半定量分析来估算结冰率,结果以图表形式呈现。根据日本巡逻艇和渔船数据而绘制的结冰示意表明结冰与大气温度和风速有关,但该模型没有考虑海水温度的影响[30]。此后,又有学者根据海上渔船 400 多次结冰数据,绘制了考虑水温、大气温度和海风的结冰厚度预测图[31-32]。此外,船舶结构与尺寸、航向和速度等也会影响结冰情况[30]。考虑船舶自身和气象环境因素可以提高经验模型的结冰预测精度,但经验模型无法给出各因素在结冰中占比,对防除冰的指导作用有限。
1994 年,一个考虑到大气和海洋参数的理论模型被开发[33]。该模型通过引入有核飞沫的概念来模拟冰积累过程,用于预测不同大小船舶的总体积冰率。 2015 年,一个称为 SHIPIC 的理论模型被开发,该模型利用船舶运动和楔形撞击模型来预估飞沫结冰的概率。然而,该模型的预测精度并不高,误差超过 50% [34]。 2018 年,纪念大学利用最大熵原理开发出一种可预测液滴大小和速度分布的概率分布模型[35]。 2021 年,一种可量化尺寸和飞沫特性的可扩展模型被提出。该模型通过使用半经验分析表达式求解物体运动来估计飞沫频率[36]。在结冰数理模型中液态水质量浓度(w)和最大垂直高度(z)是两个重要参数[37]。学者们对这两个参数进行了大量研究,如表2表3所示。
2液态水质量浓度模型[38]
Tab.2 Liquid water content model [38]
3液态水最大垂直高度模型[39]
Tab.3 Model of maximum vertical height of liquid water [39]
相同工况下不同模型计算的液态水质量浓度随海浪高度的变化如图4所示。由于每个公式考虑的因素不同,不同公式计算得到的结果存在较大差异。这也说明现有结冰预测数理模型还有很大的局限性,无法对复杂海况下的结冰情况进行准确预测。
4液态水质量浓度随海浪高度变化[36]
Fig.4Variation of liquid water content with wave height [36]
不同模型预测的液态水最大高度如图5所示。不同模型计算的液态水最大高度存在差异,这个差异随着船速的增加而增大。导致不同模型计算结果出现差异的原因可能是这些模型适用的船舶类型不同。船首的差异会直接影响海浪撞击后产生水滴的初始动能和尺寸,进而影响最大垂直高度。
5液态水最大高度随船速变化[38]
Fig.5Variation of liquid water maximum height with ship rate [38]
此外,从海浪撞击船首到形成液态水滴的时间也是影响结冰程度的一个重要参数。 Zakrzewski 将这个时间定义为[40]
t=cHvu2
(1)
式中:c 为与船首结构有关的常数,u 为风速。
在数值预测结冰方面,RIGICE04 和 ICEMOD 是两种被广泛使用的模型。 RIGICE04 模型预测海上平台的结冰情况,并考虑飞沫生成算法 SPRAY [41]。 ICEMOD 模型由挪威水文实验室于 1986 年开发,并于 1987 年、1988 年、2013 年和 2015 年逐步完善[42-43]。这两个模型对结构进行了简化,将对象分解为圆柱和平面部分,并假定分割部分周围的流场不受其他部分的影响。然而,ICEMOD 和 RIGICE04 都低估了大型结构表面的热传递,导致计算结果与实际存在较大偏差,仅可为工程领域提供参考。此外,为充分考虑传热对结冰的影响,一种借助计算流体力学来解析流动和传热,并跟踪空气中液滴运动的模型 MARICE 被提出[44]。该模型弥补了将结构简化为几何形状导致热传递偏小的问题。不同气象条件下 3 个数值模型预测的积冰量如图6所示。 RIGICE04 模型没有考虑融化,因而得到的结冰量持续增加。 MARICE 和 ICEMOD 计算的积冰量随时间增加具有相同的变化趋势。
6不同气象条件下不同数值模型预测结冰量对比
Fig.6Comparison of icing amounts predicted by different numerical models under different meteorological conditions
为进一步比较 3 个模型的准确性,将计算结果与实际值进行对比。不同风速下 3 个数值模型计算结冰量和建筑物上实际结冰量对比结果见表4。 MARICE 模型计算的结果与实际值更为接近,准确度大于 60%,而另外两个模型准确度均小于 50%。这可能是由于这两个模型将建筑物简化为几何形状而使表面换热系数减少。将模型简化虽然可降低计算时间和成本,但是也可能会降低预测准确度。
4不同风速下数值模型计算结冰质量与实际质量对比[45-46]
Tab.4 Model-calculated icing mass versus actual icing mass at different wind speeds [45-46]
人工智能(Artificial Intelligence,AI)通过自动化和智能化的手段可高效批量处理和分析大量数据,并提供精准的决策支持和预测分析[47-48]。鉴于 AI 具有高效处理大量数据的能力,研究人员将 AI 用在海水结冰情况预测[49]。 2017 年,全连接神经网络和长短期记忆网络被尝试用于预测北极海冰[50]。 2019 年,Johnson 等[51]采用 SEAS5 模型预测了海冰边缘变化情况。 2021 年,Andersson 等[52] 采用 U-Net 模型预测了未来 6 个月二元海冰出现概率。同年,Liu 等[53] 采用卷积网络模型成功预测了未来 6 周的海冰变化。 2022 年,Ren 等[54] 在 U-Net 模型基础上优化得到了 SICNet 模型,该模型可预测未来 28 d 内北极海冰的变化情况。尽管将 AI 用于海冰预测取得了一些进展,但 AI 与海冰预测的整合还处于早期阶段,仍然存在预测精度低、预测范围小等问题。此外,AI 与雷达结合可预测海冰变形[55-56],与飞机结合可预测结冰和故障识别[57-58]
结冰受到多种因素耦合的影响,并且这种影响往往是非线性的,这就导致对结冰的预测存在较大的困难。使用数值方法对这个非线性的物理过程进行求解,可在一定范围内获得精确结果,但数值模型长时间的预测精度较差。而 AI 可使用深度神经网络捕获预测因子和预测对象之间的高度非线性关系[59-60]。因此,AI 对结冰过程的预测具有天然优势,但是 AI 需要大量数据作为训练样本,如果训练样本数据存在偏差,模型预测精度也会受到影响。
1.2 结冰探测技术
防除冰和破冰的前提是了解结冰条件和冰的累积状况。海浪结冰和大气结冰是甲板和舷窗等结构结冰的主要原因[61-62],这两种结冰类型所包含的要素如图7所示[63]。海浪飞沫携带的水滴撞击并附着在甲板等冷表面时,水滴在低温下迅速凝结成冰[64]。空气冻雨、雾和过冷的大气水滴冻结是导致船舶表面结冰的另一个原因[65-66]。根据大量船舶结冰资料,海浪飞沫结冰占结冰统计总数的 90%、大气结冰占 3%、伴有雨雾的飞沫结冰占 6.4%、降雪占 0.6% [63]。高度低于 16 m 的船舶和设备结冰主要受海浪飞沫影响,高度较高的设备则受到两者的共同影响[67]
7海上结冰的两种主要来源和形成原因
Fig.7Two main sources and causes of marine icing
目测法是观测结冰情况时采用的最简单、最直接的方法。英国的 Normalair-Garrett 结冰探测系统的工作原理是在待探测区域使用一个探针,一段时间后再观察结冰情况[68]。尽管这种方法简单方便但其精度和灵敏度都不高。鉴于目测法存在的局限性,摄像法被提出,其原理是将拍下的结冰照片进行处理,使用三维测量方法等对照片中的结冰厚度进行评估,最高测量结果精度为 ± 0.4 mm。该方法的实验装置和原理如图8所示,为提高测量的精度,采用两台相机在不同位置对机翼的结冰区域进行实时拍摄。描述不同时刻照片中冰的轮廓,就可得到不用时刻不同位置的积冰厚度。该方法可解决目测法存在的测量不准和误差大的问题[69]。为进一步提高摄像法测量精度,激光测量冰形方法被提出[70]。激光器产生的激光照射到结冰表面后会反射形成一束激光条,摄像机拍摄该光条后利用图像处理算法可得到冰的三维形貌。该方法可在 2.8 m 范围内自由测量,平均结冰厚度测量精度为 ± 0. 038 mm。该类观测方法可看到结冰轮廓,具有很高的测量精度,但其装置的复杂性限制了其应用场景。此外,在结冰环境中,这些设备表面很容易发生结冰,进而影响工作状态。
为适用不同场景探冰的需求,准确实时检测结冰厚度的基于电、磁、热等物理原理的传感器检测结冰技术逐渐发展起来。结冰检测器是基于冰会影响传感器测量范围内的物性参数,通过分析参数影响程度反推得到表面结冰厚度。根据是否可直接得到结冰厚度,冰检测方法分为直接法和间接法[71-72],如表5所示。直接检测法是利用传感器监测结冰前后物理参数变化来判断结冰情况,而间接探测法是根据当前气象参数,利用模型推断该条件下的可能结冰情况[73-74]。与间接检测相比,直接检测方法具有高的精度和灵敏性。其中,光纤传感器的测量平均结冰厚度最大误差仅为 ± 0. 05 mm [75]
8三维摄像法测量积冰厚度
Fig.8Measurement of ice thickness by 3D method
5直接和间接结冰探测技术和方法
Tab.5 Direct and indirect ice accumulation detection techniques and methods
2 防除冰技术
随着工业的不断发展,各领域根据自身需求相继提出和开发了多种防除冰技术。根据是否需要额外能量输入,可将这些防除冰技术分为被动式和主动式两种。被动防除冰是指在不需要额外输入能量的情况下通过涂层等功能材料延缓或阻碍成核、降低水或冰对基体黏附力和提高表面温度的技术。主动式防除冰则是在外部能量输入的情况下提高表面温度防止成核发生或融化表面积冰的技术。
2.1 被动防除冰技术
被动防冰是在没有额外能量来源的情况下,采用物理或化学方法阻碍或延缓结冰。超疏水表面是常用的被动式防除冰技术,其可降低水或冰和表面之间的黏附强度。超疏水表面是一类基于荷叶效应的具有纳米结构和低表面能、接触角大于 150°的表面[76]。如图9所示,水滴和表面之间通常有 3 种接触状态,超疏水表面与水滴之间处于 Wenzel-Cassie 状态。固液界面之间的空气层减少了液滴和表面之间的热交换量,减缓液滴生长速率[77-78]。同时,在力作用下液滴极易从表面滑落。
9超疏水表面防冰原理[79]
Fig.9Principle of anti-icing of superhydrophobic surface [79]
根据 Wenzel-Cassie 模型理论,表面的粗糙结构和化学成分是影响润湿性的两个关键因素[80]。制备超疏水表面首先要在固体表面上构建微米级结构。然后,采用在低表面能聚合物中添加纳米颗粒或在微米结构表面添加低表面能材料的方法使表面具备超疏水性[81]。这两种方法制备的超疏水表面结构存在差异,防结冰效果也不完全相同。防冰效果一般采用冻结过程中水滴过冷阶段到冻结阶段的时间(也称为冻结延迟时间)作为指标。表6比较了不同方法制备超疏水表面的防冰效果。对比发现用激光烧蚀法、模板法和化学蚀刻法制备的具有规则微纳结构的超疏水表面具有更好的抗结冰能力。然而,超疏水表面只能延迟冻结的发生,长时间暴露在低温环境中的表面上仍会结冰[82-83]
6不同超疏水表面防冰效果
Tab.6 Anti-icing capability on superhydrophobic surfaces
为实现更长时间的防冰,依靠太阳作为热源的光热防冰技术应运而生。光热材料可将太阳能转化为热能,使表面温度高于结冰温度,水蒸气无法在表面冷凝或使表面的水滴蒸发[94]。光热转换是一个复杂而连续的过程,包括光吸收、光子能转化为热能和热传导[95-96],其防冰原理如图10所示。目前,为使水滴从表面脱离,光热材料往往和超疏水材料结合形成光热超疏水表面。光热超疏水材料制备主要通过两种方式:一种是将光热组分引入超疏水材料中,另一种是对光热材料进行超疏水改性。其中,光热材料的改性是最常用的方法。根据光热转换的不同机制,光热材料通常分为碳材料、金属纳米材料、半导体材料和高分子材料[97]。用于光热转换的材料具有波长范围为 300~2 500 nm 的宽带吸收、合适的导热系数和高稳定性等优点[98]。碳材料因来源广泛、工艺简单、易于制造等特点而受到广泛关注。
10光热材料防除冰原理[99]
Fig.10Anti-icing and de-icing principle of photothermal materials [99]
抗冻蛋白(AFPs)是生活在 0℃ 下各种生物所具有的一类特殊蛋白质。 AFPs 具有黏附在冰晶上并阻止其扩增的能力,根据结构组成差异可分为 AFPsⅠ、AFPsⅡ、AFPsⅢ、AFPsⅣ、高活性 AFPs 和抗冻糖 AFPs 6 类[100-101]。如图11所示,不同物种 AFPs 结构不同,导致其防冰机制也不同[102]。 AFPs 的功能受结构和与冰结合位点( IBS)的影响。 IBS 由平坦的疏水结构组成,对 AFPs 的抑制冰再结晶有影响。 AFPs 中存在着相似的重复结构,通过与冰一次的残基结合来促进冰结合面的形成。此外,AFPs 的非冰结合区域可与水分子相互作用,以阻碍冰晶对水的吸收,进而抑制冰晶生长[103]
此外,基于 AFPs 防冻原理,可降低冰点的防除冰化学药剂被开发[104-105]。防除冰化学药剂可分为氯化盐、醋酸盐、甲酸盐、乙酸盐,即氯化钠和氯化钙、氯化镁、醋酸钙镁、醋酸钾、甲酸钾、乙酸钠和甲酸钠等[106-107]。化学试剂的选择可根据应用场景和受保护面的特性进行。尽管化学试剂已广泛应用在不同的场合,但其会带来的环境污染和腐蚀问题[108]。基于生物质开发的新型糖类防冻试剂可很好地解决腐蚀和污染等问题。糖类抗冻剂种类有很多,包括单糖、寡糖、多糖、变性淀粉等,其抗冻机制并不相同。有些糖类是通过改变蛋白质中水的状态和性质,防止水分子与蛋白质分离,间接地对蛋白质起到保护作用。有些糖类是通过减少自由水的流动,来维持体系的稳定[109]。生物质新型防冻试剂主要是蔗糖,其是由果糖和葡萄糖通过异构体羟基缩合而形成的非还原性二糖。蔗糖具有较高的玻璃化转变温度,对阻止蛋白质二级结构改变、多肽链的伸展和聚集起着作用。但糖类防冻剂使用场合有限、成本高昂都限制其大规模应用[110-111]
11不同物种中抗冻蛋白结构和防冰原理[112-113]
Fig.11Structural and anti-icing principles of antifreeze proteins in various species [112-113]
2.2 主动防除冰技术
除不需要额外能量输入的被动防除冰方法外,需要额外输入能量以达到高效快速防除冰目的的主动防冰技术也被广泛采用。既有主动防除冰技术可分为热学法与机械法两类[114]
电热防冰是一种简单有效的主动防冰方法,其原理是将电能转化为焦耳热,使物体表面始终保持高于冰点的温度[115]。根据电热材料相对于物体表面的位置,可将其分为内部加热和外部加热,如图12所示[116-117]。内部加热通常是将加热器置于物体内部,然后将产生的热量传递到物体表面。外部加热法是指将加热器直接放置在物体表面,提高表面温度,防止结冰或融化积冰的方法[118]。外部加热比内部加热更加高效,但在恶劣环境中也易发生失效。根据电加热的持续时间,可进一步分为连续加热和间歇加热。对于表面防冰性能要求高或电力资源充足的地方,一般采用连续加热; 而对于表面防冰性能要求低、允许结冰量小、结冰时间短的部件,一般采用间歇加热。
12电热防冰技术的两种结构和工作原理
Fig.12Two structural and working principles of electrical heating anti-icing technologies
热气除冰是另一种被广泛使用的除冰方法,是利用发动机做功后排出的高温废气作为热源的除冰方法[119-120]。如图13所示,高温热空气可直接吹扫表面提高表面温度,达到防止结冰和融化冰层的目的[121]。不过,这种方法的除冰效率与发动机有关,最大诱导空气量应小于总排气量的 10%,否则会影响发动机的正常工作[122]。热气防除冰的有效性与气象条件和表面尺寸有关[123],同时数值模拟结果也表明,效率随结冰严重程度和表面长度增加而降低[124-125]。此外,还有微波加热和红外线加热的防除冰方法[126-127]
13热气除冰技术的两种结构和工作原理
Fig.13Two structural and working principles of heated antiicing technologies
机械防除冰是利用电、气、声波等在物体表面形成机械力,降低冰与物体表面的附着力,使冰在重力或外力的作用下从物体表面脱落。目前,正在研究或已广泛使用的机械除冰方法主要有电脉冲除冰、低频压电除冰、超声波除冰和气动除冰。如表7所示,这些方法被应用在各类装备上。
7机械除冰技术原理和应用实例
Tab.7 Principles and application examples of mechanical deicing technology
电脉冲除冰系统主要由电源、电容器、晶闸管和线圈 4 部分组成。其基本原理是利用电容器对线圈放电,使线圈产生强磁场,同时物体表面的导电材料产生感应电流和感应磁场[132]。根据电磁感应定律,线圈和感应器之间可瞬间产生几千牛顿的电磁力[133]。电磁力使冰获得较大的瞬时加速度,使冰面破碎[134]
低频压电除冰系统主要由驱动器、放大器和实验对象等部分组成。该系统利用反向压电原理,在需要除冰保护的区域安装压电驱动器,通过在压电材料表面施加电场,内部正负电荷发生位移,导致材料变形使冰与表面脱离[135-136]。低频压电除冰系统具有结构简单、噪音低、维护性好等优点[137]
超声波除冰系统主要由超声波发生器、超声波换能器、金属基板、夹持支架等组成[138-139]。该技术是利用了超声波的热效应和机械效应使冰从表面脱离[140]。首先,当换能器激发的超声波在冰中传播时,剪切水平波和 Lamb 波会在基体和冰的界面上产生横向剪切应力。如果剪应力大于黏附强度,冰就会从基底表面脱离。其次,超声波产生热能,导致冰的某些局部区域融化,这时界面上会形成一层薄薄的水层,超声波形成的空化气泡破裂会增强冰的分离效果。
气动除冰系统包括膨胀管、压力调节源和真空源等模块。压力调节源控制进入的压缩空气量,从而控制膨胀管的膨胀程度[141]。真空源控制膨胀管的有效收缩,确保表面光滑而不结冰。当压缩空气注入膨胀管后,会对冰施加剪切力,导致冰破裂,从而使冰从表面脱离[142-143]。该方法具有简单可靠、节省能量等优点,但也存在破坏飞机气动外形问题。
3 极地破冰技术
3.1 水面/ 水下直接破冰技术
当海面冰密集度大于 8 / 10 时,只有具备破冰能力的船舶才能在极地航行。破冰技术的发展伴随着破冰方法和破冰设备的更新。从柴油动力到功率更大的柴油-燃气轮机联合动力,逐步发展到具有超远航程和破冰能力的核动力系统,破冰动力的更新也推动了破冰能力增加。为定义船舶对于不同冰情的航行适航和破冰能力,2006 年国际船级社协会颁布了《极地船舶统一要求》,将航行船舶分为 PC1~PC7 共 7 个等级,适航能力随破冰厚度增加而依次递减[144]。如表8所示,仅有 PC1 和 PC2 的船舶才可在极地全年安全航行。 2021—2023 年不同国家极地考察的破冰科考船情况如表9所示。在极地科考方面,俄罗斯的破冰船数量和破冰能力,以及载重和总吨位都属于世界领先的地位。此外,俄罗斯拥有在役破冰船超过 40 艘,还拥有世界上唯一一艘核动力破冰船。
8PC 级破冰船适航能力和破冰厚度
Tab.8 Seaworthiness and ice thickness of PC-class icebreakers
92021—2023 年不同国家极地考察破冰科考船情况[145]
Tab.9 Ice-breaking research vessels of different countries for expeditions to the polar regions during 2021—2023 [145]
船只破冰时直接接触冰层,依靠自身结构和动力可采用顶撞、冲撞和首压 3 种技术破冰[146-147]图14(a)是顶撞破冰方式示意,该方式利用船体自重,将船头变成“凿子”依靠自重的巨大惯性和船体动力,连续撞击冰顶破开冰面。图14(b)为冲撞法,通过反复的前进和倒车操作使船只冲破冰层。这种方法操作频繁,速度较低,而且向前反转会面临被厚冰困住的危险。图14( c)为首压破冰法,通过向船头水舱注水增加重量然后抽水减轻重量,反复进行翘头、压冰、注水等动作来实现破冰。这种方法操作复杂,水箱体积大,运行能耗高。此外,还有非对称破冰船、双向破冰船、撬冰船、半潜式破冰船等[148]
14船舶 3 种冰面破冰方式示意
Fig.14Schematic diagram of three ice-breaking methods
此外,在冰面下巡航的潜艇需要浮出海面时也要进行破冰操作。冰面下破冰主要有机械挤压和鱼雷爆炸两种方法,如图15所示。对于厚度小于 1 m 的冰层,冰下潜艇可以较慢的速度缓慢推开冰层。对于大于 1.5 m 的冰层,这种与冰层直接碰撞的方式是不安全的。为提高潜艇的破冰能力,俄罗斯潜艇模仿鲸鱼破冰的方法,参照鲸鱼的背部,为潜艇设计了一个“鲸背”。潜艇的背部设计了双层外壳,潜艇顶部由硬化的钨钢制成,确保不会被冰层划伤[149]。为进一步降低直接破冰对潜艇结构强度的高要求,鱼雷爆炸破冰方法被提出。先释放鱼雷炸开冰层,然后潜艇破洞中上浮。
15潜艇两种水下破冰方式示意
Fig.15Schematic diagram of two ice-breaking methods for submarine underwater
3.2 辅助破冰技术
为降低直接机械破冰的能耗和操作难度,“先弱冰再破冰” 的耦合辅助破冰技术逐渐受到关注[150]。如激光融冰和快速倾斜等都是常用的辅助手段。激光具有高能量密度,当照射到物体表面或内部时会导致目标材料融化、断裂甚至蒸发[151],目标物体也可能会发生热汽化,产生的高压蒸汽压力波急剧膨胀,导致材料内部爆炸。烧蚀效应和冲击波效应是激光在短时间内对目标物体定向破坏的主要原因[152]。在破冰之前,首先利用激光对目标冰层进行预处理,在冰层上融孔或切割,以降低冰层强度。此外,激光破冰效率与激光功率[153] 和辐照角度[154] 有关。如图16所示,水平面激光融冰实验中,随着激光功率的增大,能量效率呈现先减小后增大的趋势。辐照角度对融孔深度的影响更为显著,随着辐照角度的增大融孔深度增加。
16激光功率和辐照角度对融冰影响规律
Fig.16Effect of power and irradiation angle on ice melting
气泡辅助破冰也是常用的破冰技术,其最早由芬兰专家于 1967 年设计,旨在通过气水混合流减少船体与冰块或积雪之间的摩擦[155]。该系统将压缩空气从靠近船体间隔排列的喷嘴喷出,当空气沿着船体上浮时,会把冰块从船体边沿推离,并在冰块和船体中间形成无冰区域。为研究气泡上浮过程中,气泡、水和海冰的相互作用而导致海冰加速破裂的机制,有学者进行了气泡辅助破冰实验。气泡在船壳和冰中间形成了悬臂梁结构,从而减小了破冰的阻力[156]。此外,射流破冰[157]、压载水调驳[158]、弯曲重力波破冰[159]等辅助破冰技术已有研究。其工作原理和特点如表10所示。
10辅助破冰方法和工作原理
Tab.10 Auxiliary ice-breaking methods and principles
4 结论与展望
1)结冰预测主要基于经验、理论和数值 3 种模型,其中,平均结冰厚度的理论模型预测准确度小于 50%,而数值模型准确度大于 60%。为提高计算速率而对实际模型进行过度简化是数值模型准确度受限的主要原因。通过提高数值模型与实际物体的相似度,充分考虑物体外形和环境的换热量,可提高模型准确度。结合机器学习,使数值模型自我优化调整,可进一步提高结冰预测精度与效率。结冰探测主要采用观测与检测两种方法,前者精度高但装置复杂、适用性低,后者装置简单、准确度低,但较为常用。结冰探测法精度的提高均有赖于对复杂环境结冰特性的掌握,以及对冻结过程中霜冰内部传热传质与流动耦合作用机制的充分理解。
2)既有防除冰技术包含被动式和主动式两种,前者主要有超疏水表面、光热表面、抗冻蛋白与化学试剂涂覆等,该类技术具有能耗低、操作简单、时效短等特点; 后者以热力式和机械式为代表,具有效率高、装置复杂等特点。两类技术在极地低温极端环境中均面临能源紧缺、盐分腐蚀等极端挑战。此类问题的最终解决有赖于化学、传热学、流体力学、机械等多学科协同合作,基于复杂表面与热力或机械耦合的防除冰策略,实现各装备独有的高效防除冰技术。
3)现有极地水面船舶破冰的冲撞、顶撞和首压技术与水下潜艇的挤压上浮破冰技术,均为传统机械破冰技术。尽管既有破冰技术仍以机械式为主,但其存在能效低、操作难度大、破冰厚度有限等诸多问题。为满足实际破冰需求,加大船舶与潜艇壳体厚度不仅造成装备冗余、运行能耗高,也会提高操作难度、降低装备灵活性等,因此,基于激光融冰等辅助方式“先弱冰再破冰”的耦合破冰技术逐步备受关注。
1极地气候及冰雪冷冻灾害造成的损失
Fig.1Impacts of polar climate and frozen ice and snow disasters
2世界气象组织对海冰的分类
Fig.2World Meteorological Organization classification of sea ice
3本研究内容概况
Fig.3Overview of research content
4液态水质量浓度随海浪高度变化[36]
Fig.4Variation of liquid water content with wave height [36]
5液态水最大高度随船速变化[38]
Fig.5Variation of liquid water maximum height with ship rate [38]
6不同气象条件下不同数值模型预测结冰量对比
Fig.6Comparison of icing amounts predicted by different numerical models under different meteorological conditions
7海上结冰的两种主要来源和形成原因
Fig.7Two main sources and causes of marine icing
8三维摄像法测量积冰厚度
Fig.8Measurement of ice thickness by 3D method
9超疏水表面防冰原理[79]
Fig.9Principle of anti-icing of superhydrophobic surface [79]
10光热材料防除冰原理[99]
Fig.10Anti-icing and de-icing principle of photothermal materials [99]
11不同物种中抗冻蛋白结构和防冰原理[112-113]
Fig.11Structural and anti-icing principles of antifreeze proteins in various species [112-113]
12电热防冰技术的两种结构和工作原理
Fig.12Two structural and working principles of electrical heating anti-icing technologies
13热气除冰技术的两种结构和工作原理
Fig.13Two structural and working principles of heated antiicing technologies
14船舶 3 种冰面破冰方式示意
Fig.14Schematic diagram of three ice-breaking methods
15潜艇两种水下破冰方式示意
Fig.15Schematic diagram of two ice-breaking methods for submarine underwater
16激光功率和辐照角度对融冰影响规律
Fig.16Effect of power and irradiation angle on ice melting
1海面冰密集度分类及对船舶通航能力影响
2液态水质量浓度模型[38]
3液态水最大垂直高度模型[39]
4不同风速下数值模型计算结冰质量与实际质量对比[45-46]
5直接和间接结冰探测技术和方法
6不同超疏水表面防冰效果
7机械除冰技术原理和应用实例
8PC 级破冰船适航能力和破冰厚度
92021—2023 年不同国家极地考察破冰科考船情况[145]
10辅助破冰方法和工作原理
ENGELBRECHT H. Glaciers,ice sheets,sea ice,and permafrost areas[J]. Recent Patents on Mechanical Engineering,2017,13:86. DOI:10.2174/9781681086 019117010011
BAI Xu, YANG Sujie, WEI Ping,et al. Numerical simulation of the impact and freezing stage of supercooled droplets on the ship superstructure surface in the Arctic route[J]. Frontiers in Energy Research,2022,10:950649. DOI:10.3389/fenrg.2022.950649
SAMUELSEN E M, GRAVERSEN R G. Weather situation during observed ship-icing events off the coast of Northern Norway and the Svalbard Archipelago[J]. Weather and Climate Extremes,2019,24:100200. DOI:10.1016/j.wace.2019.100200
王聪. 滇东北高原山地输电线路超声波除冰技术研究[D]. 昆明: 昆明理工大学,2022. WANG Cong. Research on ultrasonic de-icing technology of transmission lines in plateau mountain areas[D]. Kunming: Kunming University of Science and Technology,2022
SHAO Keke, ZHEN Zekang, GAO Runmiao,et al. Comparative experimental study of the effect of loading rate on the typical mechanical properties of bubble and clear ice cubes[J]. Experimental Thermal and Fluid Science,2024,159:111264. DOI:10.1016/j.expthermflusci.2024.111264
方涛, 黄卫权, 王宗义. 船用极区格网惯性导航系统综合校正方法[J]. 哈尔滨工业大学学报,2020,52(4):58. FANG Tao, HUANG Weiquan, WANG Zongyi. Comprehensive calibration method of shipborne grid inertial navigation system[J]. Journal of Harbin Institute of Technology,2020,52(4):58. DOI:10.11918/201811112
CARSTENS T. Special hazards in open waters at high latitudes[J]. Cold Region Science and Technology,1983,7:293. DOI:10.1016/0165-232X(83)9007 5-7
SHAO Keke, SONG Mengjie, ZHANG Xuan.et al. Growth and distribution characteristics of trapped air bubbles in ice slices[J]. Physics of Fluids,2023,35:113319. DOI:10.1063/5.0175106
余思锐, 宋孟杰, 沈俊, 等. 低温静止与运动表面结冰特性预测技术研究进展[J]. 哈尔滨工业大学学报,2024,56(10):150. YU Sirui, SONG Mengjie, SHEN Jun,et al. Research progress on icing characteristic prediction technologies for low temperature stationary and moving surfaces[J]. Journal of Harbin Institute of Technology,2024,56(10):150. DOI:10.11918/202402006
HUANG Lizhen, SONG Mengjie, SHEN Jun,et al. Experimental study on the effect of inverted aperture plate temperature on frosting characteristics under rising flow considering edge effect[J]. International Journal of Heat and Mass Transfer,2024,224:12543. DOI:10.1016/j.ijheatmasstransfer.2024.125343
CAO W S, BEGGS C, MUJTABA I M. Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy[J]. Desalination,2015,355:22. DOI:10.1016/j.desal.2014.09.034
SONG Ruikai, WANG Kunwei, GONG Mengting,et al. Multiphysical field simulations of directional seawater freezecrystallisation under a magnetic field[J]. Desalination,2023,560:116687. DOI:10.1016/j.de sal.2023.116687
ZHAO Caojun, LIN Yukai, WU Xiaomin,et al. Nanoscale insights on the freezing front propagation and ion behaviors during seawater freezing[J]. Applied Surface Science,2023,641:158499. DOI:10.1016/japsusc.2023.158499
SHAO Keke, SONG Mengjie, SHEN Jun,et al. Experimental study on the distribution and growth characteristics of trapped air bubbles in ice slices at different freezing temperatures[J]. Applied Thermal Engineering,2024,244:122600. DOI:10.1016/j.appltherm aleng.2024.122600
黄菲, 孙治宏, 王宏. 北极高密集度冰区海冰的多时间尺度变化特征及其极端低值事件分析[J]. 中国海洋大学学报(自然科学版),2021,51(2):1. HUANG Fei, SUN Zhihong, WANG Hong. Multi-scale variability of sea ice concentration in the Arctic high concentration ice region and its extremely low events[J]. Periodical of Ocean University of China,2021,51(2):1. DOI:10.16441/j.cnki.hdxb.20200067
李淑瑶, 崔红艳.1982—2001 年与 2002—2021 年北极秋季海冰的时空变化及原因[J]. 海岸工程,2022,41(2):162. LI Shuyao, CUI Hongyan. The spatial-temporal variation of arctic autumn sea ice and its impact factors in 1982—2001 and 2002—2021[J]. Coastal Engineering,2022,41(2):162. DOI:10.12362/j.issn.1002-3682.20210129001
YUE Che, SHEN H H. Wave-influenced formation of newice:model building and a test case[J]. Ocean Modelling,2021,167:101878. DOI:10.1016/j.applthermal eng.2024.122600
MARTIN S. Frazil ice in rivers and oceans[J]. Annual Review of Fluid Mechanics,1981,13:379. DOI:10.1146/annurev.fl.13.010181.002115
NAUMANN A K, NOTZ D, HÅVIK L,et al. Laboratory study of initial sea-ice growth:properties of grease ice and nilas[J]. The Cryosphere,2012,6(4):729. DOI:10.5194/tc-6-729-2012
GRAVNER J, GROFFEATH D. Modeling snow crystal growth II:a mesoscopic lattice map with plausible dynamic[J]. Physica D Nonlinear Phenomena,2008,237(3):385. DOI:10.1016/j.physd.2007.09.008
赵杰臣, 周翔, 孙晓宇, 等. 北极遥感海冰密集度数据的比较和评估[J]. 遥感学报,2017,21(3):351. ZHAO Jiechen, ZHOU Xiang, SUN Xiaoyu,et al. The inter comparison and assessment of satellite sea-ice concentration datasets from the arctic[J]. Journal of Remote Sensing,2017,21(3):351. DOI:10.11834/jrs.20176136
ZHAO Yugang, GUO Qing, CHENG Ping. A review of recent literature on icing phenomena:transport mechanisms,their modulations and controls[J]. International Journal of Heat and Mass Transfer,2020,159(2):120074. DOI:10.1016/jijheatmasstransfe r.2020.120074
周盛奇, 刘杨, 李维仲, 等. 自然对流条件下冷表面结霜的实验研究[J]. 制冷学报,2019,40(5):143. ZHOU Shengqi, LIU Yang, LI Weizhong,et al. Experimental investigation on frost formation on cold surface under natural convection conditions[J]. Journal of Refrigeration,2019,40(5):143. DOI:10.3969/j.issn.0253-4339.2019.05.143
ZHANG Xuan, GAO Yubo, LIU Xin,et al. Modelling of the icing processes of sessile supercooled water droplets on cold spheres[J]. Applied Thermal Engineering,2024,243:122596. DOI:10.1016/j.applthermaleng.2024.122596
HE Qiang, JIA Yangyang, WANG Haoyu,et al. Triple conversion strategy to build anti-deicing sheets for the leading edge of the rotor blade[J]. Materials & Design,2024,237(4):112516. DOI:10.1016/j.matdes.2023.112516
MANDUMPAL J B. Ice,the crystalline phase of water[J]. Recent Patents on Mechanical Engineering,2017,31:154. DOI:10.2174/9781681084237117010009
ZHANG Yihang, LIU Ranwei, YUAN Lihao,et al. Ice breaking by low-velocity impact with a rigid sphere[J]. International Journal of Impact Engineering,2023,182:104786. DOI:10.1016/j.ijimpeng.2023.104786
SULTANA K R, DEHGHANI S R, POPE K,et al. A review of numerical modelling techniques for marine icing applications[J]. Cold Region Science and Technology,2018,145:40. DOI:10.1016/j.coldregion s.2017.08.007
MINTU S, MOLYNEUX D, COLBOURNE B. A theoretical model for ship-wave impact generated sea spray[J]. Journal Offshore Mechanics and Arctic Engineering,2020,143(4):1. DOI:10.1115/1.4049122
DEHGHANI S A R, DEHGHANI S R, NATERER G F,et al. Marine icing phenomena on vessels and offshore structures:prediction and analysis[J]. Ocean Engineering,2017,143(1):1. DOI:10.1016/j.oceaneng2017.07.049
DEHGHANI-SANIJ A R, DEHGHANI S R, NATERER G. F,et al. Sea spray icing phenomena on marine vessels and offshore structures:review and formulation[J]. Ocean Engineering,2017,132:25. DOI:10.1016/j.oceaneng.2017.01.016
OVERLAND J E. Prediction of vessel icing for near-freezing sea temperatures[J]. Weather and Forecasting,1990,5(1):62. DOI:10.1175/1520-0434(1990)005 <0062: POVIFN >2.0. CO;2
HORJEN I. Including partly freezing of droplets during flight in a sea spray icing model[J]. Ocean Engineering,2024,308:118281. DOI:10.1016/j.oceaneng.2024.118281
MINTU S, MOLYNEUX D. Ice accretion for ships and offshore structures. Part 1:state of the art review[J]. Ocean Engineering,2022,258:111501. DOI:10.1016/j.oceaneng.2022.111501
BODAGHKHANI A, COLBOURNE B, MUZYCHKA Y S. Prediction of droplet size and velocity distribution for spray formation due to wave-body interactions[J]. Ocean Engineering,2018,155:106. DOI:10.1016/j.oceaneng.2018.02.057
MINTU S, MOLYNEUX D, COLBOURNE B. A theoretical model for ship-wave impact generated sea spray[J]. Journal Offshore Mechanics and Arctic Engineering,2021,143(4):041201. DOI:10.1115/1.4049122
SAMUELSEN E M. Ship-icing prediction methods applied in operational weather forecasting[J]. Quarterly Journal of the Royal Meteorological Society,2018,144(710):13. DOI:10.1002/qj.3174
BODAGHKANI A, DEHGHANI S, MUZYCHKA Y. S,et al. Understanding spray cloud formation by wave impact on marine objects[J]. Cold Region Science and Technology,2016,129:114. DOI:10.1016/j.coldregions.2016.06.008
LOZOWSKI E P, SZILDER K, MAKKONEN L. Computer simulation of marine ice accretion[J]. Philosophical Transactions of the Royal Society A,2000,358(176):2811. DOI:10.1098/rsta.2000.0687
ZAKRZEWSKI W P. Splashing a ship with collision generated spray[J]. Cold Region Science and Technology,1987,14(1):65. DOI:10.1016/0165-232X(87)90045-0
LOZOWSKI E P, SZILDER K, MAKKONEN L. Computer simulation of marine ice accretion[J]. Philosophical Transactions of the Royal Society B Biological Sciences,2000,358(1776):2811. DOI:10.1098/rsta.2000.0687
HORJEN I. Numerical modeling of two-dimensional sea spray icing on vessel-mounted cylinders[J]. Cold Region Science and Technology,2013,93:20. DOI:10.10 16/j.coldregions.2013.05.003
HORJEN I. Offshore drilling rig ice accretion modeling including a surficial brine film[J]. Cold Region Science and Technology,2015,119:84. DOI:10.1016/j.coldregions.2015.07.006
KULYAKHTIN A, TSARAU A. A time-dependent model of marine icing with application of computation fluid dynamics[J]. Cold Region Science and Technology,2014,104/105:33. DOI:10.1016/j.coldregions.2014.05.001
SHARPLES S. Full-scale measurements of convective energy losses from exterior building surfaces[J]. Building and Environment,1984,19(1):31. DOI:10.1016/0360-1323(84)90011-8
LOVEDAY D L, TAKI A H. Convective heat transfer coefficients at a plane surface on a full-scale building facade[J]. International Journal of Heat and Mass Transfer,1996,39(8):1729. DOI:10.1016/0017-9310(95)00268-5
KIM J H, KIM Y, LU Wenjun. Prediction of ice resistance for icegoing ships in level ice using artificial neural network technique[J]. Ocean Engineering,2020,217:108031. DOI:10.1016/j.oceaneng.2020.108031
KREUTZ M, ALLA A A, VARASTEH K,et al. Convolutional neural network with dual inputs for time series ice prediction on rotor blades of wind turbines[J]. Procedia CIRP,2021,104:446. DOI:10.1016/jp rocir.2021.11.075
SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Netw,2015,61:85. DOI:10.1016/j.neunet.2014.09.003
CHI J, KIM H. Prediction of arctic sea ice concentration using a fully data driven deep neural network[J]. Remote Sensing,2017,9(12):1305. DOI:10.3390/rs9121305
JOHNSON S J, STOCKDALE T N, FERRANTI L,et al. SEAS5:the new ECMWF seasonal forecast system[J]. Geoscientific Model Development,2019,12:1087. DOI:10.5194/gmd-12-1087-2019
ANDERSSON T R, HOSKING J S, PÉREZ-ORTIZ M.et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning[J]. Nature Communication,2021,12:5124. DOI:10.1038/s41467-021-25257-4
LIU Yang, BOGAAEDT L, ATTEMA J,et al. Extended-range Arctic sea ice forecast with convolutional long short-term memory networks[J]. Monthly Weather Review,2021,149:1673. DOI:10.1175/MWR-D-20-0113.1.
REN Libin, LI Xiaofeng, ZHANG Wenhao,et al. A data-driven deep learning model for weekly sea ice concentration prediction of the pan-arctic during the melting season[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,22:1. DOI:10.1109/TGRS.2022.3177600
CHEN Junting, MU Longjiang, JIA Xiaoyi,et al. The detection of Arctic sea ice linear kinematic features using LadderNet[J]. Ocean Modeling,2024,190:102400. DOI:10.1016/j.ocemod.2024.102400
CHEN Ge, HUANG Baoxiang, CHEN Xiaoyan,et al. Deep blue AI:a new bridge from data to knowledge for the ocean science[J]. Deep Sea Research Part I: Oceanographic Research Papers,2022,190:103886. DOI:10.1016/j.dsr.2022.103886
DONG Yiqun. Implementing deep learning for comprehensive aircraft icing and actuator/sensor fault detection/identification[J]. Engineering Applications of Artificial Intelligence,2019,86:28. DOI:10.1016/j.engappai.2019.04.010
DONG Yiqun, AI Jianliang. Research on inflight parameter identification and icing location detection of the aircraft[J]. Aerospace Science and Technology,2013,29(1):305. DOI:10.1016/j.ast.2013.03.012
DONG Xiaoran, YANG Qinghua, NIE Yafei,et al. Antarctic sea ice prediction with a convolutional long short-term memory network[J]. Ocean Modelling,2024,190:102386. DOI:10.1016/j.ocemod.2024.102386
EAYRS C, LEE W S, JIN E,et al. Advances in machine learning techniques can assist across a variety of stages in sea ice applications[J]. Bulletin of the American Meteorological Society,2024,105(3): E527. DOI:10.1175/BAMS-D-23-0332.1
ZHOU Liang, LIU Ruidi, YI Xian. Research and development of anti-icing/deicing techniques for vessels:review[J]. Ocean Engineering,2022,260:112008. DOI:10.1016/j.oceaneng.2022.112008
MA Zhiwei, ZHANG Peng, WANG Ruzhu. Review of recent patents on ice slurry generation[J]. Recent Patents on Mechanical Engineering,2011,5(2):103. DOI:10.2174/187221211796320756
DEHGHANI S R, MUZYCHKA Y S, NATERER G F. Droplet trajectories of wave-impact sea spray on a marine vessel[J]. Cold Region Science and Technology,2016,127:1. DOI:10.1016/j.coldregions.2016.03.010
SAMUELSEN E M, EDVARDSEN K, GRAVERSEN R G. Modelled and observed sea-spray icing in Arctic-Norwegian waters[J]. Cold Region Science and Technology,2017,134:54. DOI:10.1016/j.coldregions.2016.11.002.
DEHGHANI S A R, MAHMOODI M, DEHGHANI S R,et al. Experimental investigation of vertical marine surface icing in periodic spray and cold conditions[J]. Journal of Offshore Mechanics and Arctic Engineering,2019,141(2):1. DOI:10.1115/1.4041394
DEHGHANI S A R, DEHGHANI S R, NATERER G F,et al. Sea spray icing phenomena on marine vessels and offshore structures:review and formulation[J]. Ocean Engineering,2017,132:25. DOI:10.1016/joceaneng.2017.01.016
YOUSUF A, KHAWAJI H, VIRL M S. A review of infrared thermography applications for ice detection and mitigation[J]. Cold Region Science and Technology,2024,218:104058. DOI:10.1016/j.coldregions.2023.104058
HOUSE W, SQUAER W. Patran at Normalair-Garrett[J]. Aircraft Engineering and Aerospace Technology,1988,60(2):26. DOI:10.1108/eb036574
COLLIER P, DIXON L, FONTANA D,et al. The use of close range photogrammetry for studying ice accretion on aerofoil sections[J]. The Photogrammetric Record,1999,16(94):671. DOI:10.1111/0031-868X.00146
魏龙涛, 左承林, 郭向东, 等. 三维冰形激光测量技术在结冰风洞中的应用[J]. 航空动力学报,2024,39(11):20220958. WEI Longtao, ZUO Chenglin, GUO Xiangdong,et al. Application of 3D ice shape laser measurement technology in icing wind tunnel[J]. Journal of Aerospace Power,2024,39(11):20220958. DOI:10.13224/j.cnki.jasp.20220958
VIRK M S, MUSTAFA M Y, AL-HAMDAN Q. Atmospheric ice accretion measurement techniques[J]. The International Journal of Multiphysics,2011,5(3):229. DOI:10.1260/1750-9548.5.3.229
YU Sirui, SONG Mengjie, GAO Runmiao,et al. A review of icing prediction techniques for four typical surfaces in low-temperature natural environments[J]. Applied Thermal Engineering,2024,241:122418. DOI:10.1016/j.applthermaleng.2024.122418
张永杰, 张露, 罗贵森. 飞机翼面结冰试验积冰厚度探测技术研究进展[J]. 应用力学学报,2023,40(3):504. ZHANG Yongjie, ZHANG Lu, LUO Guisen. Advances in research on ice accumulation thickness detection technology in aerofoil icing test[J]. Chinese Journal of Applied Mechanics,2023,40(3):504. DOI:10.11776/j.issn.1000-4939.2023.03.02
HOMOLA M C, NICKLASSON P J, SUNDSBØ P A. Ice sensors for wind turbines[J]. Cold Region Science and Technology,2006,46(2):125. DOI:10.1016/j.coldregions.2006.06.005
GE Junfeng, YE Lin, ZOU Jianhong. A novel fiber-optic ice sensor capable of identifying ice type accurately[J]. Sensor and Actuators A: Physical,2012,175:35. DOI:10.1016/j.sna.2011.12.016
SAEIDIHARZAND S, SADAGHANI A K, YÜRÜM A,et al. Multiscale superhydrophobic zeolitic imidazolate framework coating for static and dynamic anti-icing purposes[J]. Advanced Materials Interfaces,2023,10:2202510. DOI:10.1002/admi.202202510
HUANG Wei, HUANG Jinxia, GUO Zhiguang,et al. Icephobic/anti-icing properties of superhydrophobic surfaces[J]. Advances in Colloid and Interface Science,2022,304:102658. DOI:10.1016/j.cis.2022.102658
邵苛苛, 宋孟杰, 张旋, 等. 冰中微尺度受陷气泡生长分布特性与宏观热力影响综述[J]. 哈尔滨工业大学学报,2024,56(6):152. SHAO Keke, SONG Mengjie, ZHANG Xuan,et al. A review of micro-scale trapped air bubble growth distribution characteristics and thermal mechanical effects in ice[J]. Journal of Harbin Institute of Technology,2024,56(6):152. DOI:10.11918/202311080
XU Yuan, LI Anling, ZHANG Fangyuan,et al. Study on anti-icing performance of carbon fiber composite superhydrophobic surface[J]. Materials Today Chemistry,2023,29:101421. DOI:10.1016/jmtchem.202 3.101421
GAO Runmioa, SONG Mengjie, CHAO Christopher Yuhang,et al. Review on condensation frosting and defrosting experiments for superhydrophobic surfaces[J]. Applied Thermal Engineering,2024,236:121691. DOI:10.1016/j.applthermaleng.2023.121691
FENG Xiaoming, ZHANG Xiaowei, TIAN Guizhong. Recent advances in bioinspired superhydrophobic ice-proof surfaces:challenges and prospects[J]. Nanoscale,2022,14:5960. DOI:10.1039/D2N R00964A
LI Anling, KU Guotao, XU Yuan.et al. Superhydrophobic surface with good anti-icing properties and high durability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2024,698:134539. DOI:10.1016/j.colsurfa.2024.134539
XIE Zhengting, TIAN Ye, SHAO Yice,et al. Recent progress in anti-icing and deicing applications of the photothermal conversion materials[J]. Progress in Organic Coatings,2023,184:107834. DOI:10.1016/j.porgco at.2023.107834
WANG Chenbing, WANG Jiulong, LI Zhentong,et al. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J]. Journal of Materials Chemistry A,2020,8(19):9528. DOI:10.1039/D0TA01439G
XIE Huaxie, WEI Jinfei, DUAN Shuyi,et al. Non-fluorinated and durable photothermal superhydrophobic coatings based on attapulgite nanorods for efficient anti-icing and deicing[J]. Chemical Engineering Journal,2022,428(16):1385. DOI:10.1016/j.cej.2021.132585
邵苛苛, 宋孟杰, 江正勇, 等. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报,2023,74(增刊 1):161. SHAO Keke, SONG Mengjie, JIANG Zhengyong,et al. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice[J]. CIESC Journal,2023,74(Sup.1):161. DOI:10.11949/0438-1157.20221643
FUZIL N S, OTHMAN N H, ALIAS N H,et al. A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J]. Desalination,2011,517:115259. DOI:10.1016/j.desal.2021.115259
CHENG Pengfei, WANG Dong, SCHAAF P. A review on photothermal conversion of solar energy with nanomaterials and nanostructures:from fundamentals to applications[J]. Advanced Sustainable Systems,2022,6(9):2200115. DOI:10.1002/adsu.202200115
NGUYEN V H, NGUYEN B D, PHAM H T,et al. Anti-icing performance on aluminum surfaces and proposed model for freezing time calculation[J]. Scientific Reports,2021,11:3641. DOI:10.1038/s41598-020-80886-x
LV Fengyong, ZHANG Peng. Fabrication and characterization of superhydrophobic surfaces on aluminum alloy substrates[J]. Applied Surface Science,2014,321:166. DOI:10.1016/j.apsusc.2014.09.147
XIE Zhenting, WANG Hong, GENG Yang,et al. Carbon-based photothermal superhydrophobic materials with hierarchical structure enhances the anti-icing and photothermal deicing properties[J]. ACS Applied Materials and Interfaces,2021,13(40):48308. DOI:10.1021/acsami.1c15028
HAN S W, JEONG J, LEE D H. Ice-phobic behavior of superhydrophobic Al surface under various etching conditions[J]. Journal of Electroceramics,2014,33:82. DOI:10.1007/s10832-014-9924-2
XING Wei, LI Zu, YANG Haiou,et al. Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser[J]. Materials & Design,2019,183:108156. DOI:10.1016/j.matdes.2019.108156
KHANDAVALLI S, ROGERS P, ROTHSTEIN J P. Roll-to-roll fabrication of hierarchical superhydrophobic surfaces[J]. Applied Physical Letter,2018,113:041601. DOI:10.1063/1.5037946
GUO Chunfang, ZHANG Meiju, HU Jun. Icing delay of sessile water droplets on superhydrophobic titanium alloy surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,621:126587. DOI:10.1016/j.colsurfa.2021.126587
RUAN Min, ZHAN Yanlong, WU Yuansheng,et al. Preparation of PTFE/PDMS superhydrophobic coating and its anti-icing performance[J]. RSC Advances,2017,7(66):41339. DOI:10.1039/C7RA05264B
HU Jianlin, XU Ke, WU Yao,et al. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface[J]. Applied Surface Science,2014,317:534. DOI:10.1016/j.apsusc.2014.08.145
QI Chunhong, CHEN He, SHEN Luyan,et al. Superhydrophobic surface based on assembly of nanoparticles for application in antiicing under ultralow temperature[J]. ACS Applied Nano Materials,2020,3(2):2047. DOI:10.1021/acsanm.0c00220
SHI Jing, KE Shenglan, WANG Fan,et al. Recent advances in photothermal anti-/de-icing materials[J]. Chemical Engineering Journal,2024,481:148265. DOI:10.1016/j.cej.2023.148265
REKUVIENE R, SAEIDIHARZAND S, MAŽEIKA L,et al. A review on passive and active anti-icing and de-icing technologies[J]. Applied Thermal Engineering,2024,250:123474. DOI:10.1016/j.applthermaleng.2024.123474
DUMAN J G. Animal ice-binding(antifreeze)proteins and glycolipids:an overview with emphasis on physiological function[J]. Journal of Experimental Biology,2015,218:1846. DOI:10.1242/jeb.116905
WU Xiaojun, YAO Fanglian, ZHANG Hong,et al. Antifreeze proteins and their biomimetics for cell cryopreservation mechanism,function and application:a review[J]. International Journal of Biological Macromolecules,2021,192:1276. DOI:10.1016/j.ijbiomac.2021.09.211
BASKARAN A, KAARI M, VENUGOPAL G,et al. Anti freeze proteins(AFP)properties,sources and applications:a review[J]. International Journal of Biological Macromolecules,2021,189:292. DOI:10.1016/j.ijbiomac.2021.08.105
RASHID Y, KHAWAJA H A, EDVARDSEN K. Review of marine icing and anti-/de-icing systems[J]. Journal of Marine Engineering & Technology,2016,15(2):79. DOI:10.1080/20464177.2016.1216734
MENG Yongjun, ZHAO Qixiong, LEI Jiechao,et al. Preparation of biological antifreeze protein-modified emulsified asphalt coating and research on its anti-icing performance[J]. Construction and Building Materials,2021,294:123473. DOI:10.1016/j.conbuildmat.2021.123473
GRUBER M R, HOFKO B, HOFFMANN M,et al. Deicing performance of common deicing agents for winter maintenance with and without corrosion-inhibiting substances[J]. Cold Region Science and Technology,2023,208:103795. DOI:10.1016/j.coldregions.2023.103795
FARAZABEH M, RYERSON C C. Anti-icing and deicing techniques[J]. Cold Region Science and Technology,2011,65(1):1. DOI:10.1016/J. COLDREGIO NS.2010.08.012
PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines:critical review[J]. Cold Region Science and Technology,2011,65(1):88. DOI:10.1016/j.coldregions.2010.01.005
OKAMOTO R, ORII R, SHIBATA H,et al. Regulating antifreeze activity through water:latent functions of the sugars of antifreeze glycoprotein revealed by total chemical synthesis[J]. Chemistry: A European Journal,2023,29:e202203553. DOI:10.1002/chem.202203553
RYERSON C C. Ice protection of offshore platforms[J]. Cold Region Science and Technology,2011,65(1):97. DOI:10.1016/j.coldregions.2010.08.012
SHI Xiaoming, AKIN M, PAN T,et al. Deicer impacts on pavement materials:introduction and recent developments[J]. The Open Civil Engineering Journal,2009,3(1):16. DOI:10.2174/1874149500903010016
GHARIB G, SAEIDIHARZAND S, SADAGHIANI A,et al. Antifreeze proteins:a tale of evolution from origin to energy applications[J]. Front Bioeng Biotechnol,2021,9:770588. DOI:10.3389/fbioe.2021.770588
XIANG Hong, YANG Xiaohu, KE Lei,et al. The properties,biotechnologies,and applications of antifreeze proteins[J]. International Journal of Biological Macromolecules,2020,153:661. DOI:10.1016/j.ijbiomac.2020.03.040
POURBAGIAN M, HABASHI W G. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode[J]. International Journal of Heat Fluid Flow,2015,54:167. DOI:10.1016/j.ijheatfluidflow.2015.05.012
ANTONINI C, INNOCENTI M, HORN T,et al. Understanding the effect of superhydrophobic coatings on energy reduction in antiicing systems[J]. Cold Regions Science and Technology,2011,67(1/2):58. DOI:10.1016/j.coldregions.2011.02.006
CHU Hetao, ZHANG Zhichun, LIU Yanju,et al. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing[J]. Carbon,2014,66:154. DOI:10.16/j.carbon.2013.08.053
MOSHENI M, AMIRFAZLI A. A novel electro-thermal anti-icing system for fiber-reinforced polymer composite airfoils[J]. Cold Region Science and Technology,2013,87:47. DOI:10.1016/j.coldregions.2012.12.003
REDONDO O, PROLONGO S G, CAMPO M,et al. Anti-icing and deicing coatings based Joule′s heating of graphene nanoplatelets[J]. Composites Science and Technology,2018,164:65. DOI:10.1016/j.compscite ch.2018.05.031
LI Bo, HE Lifu, LIU Yu,et al. Influences of key factors in hotair deicing for live substation equipment[J]. Cold Region Science and Technology,2019,160:89. DOI:10.1016/j.coldregions.2019.01.013
BAJELANI M, ANSARI M R, NADIMI E. A comprehensive study of effective parameters on the thermal performance of porous media micro combustor in thermo photovoltaic systems[J]. Applied Thermal Engineering,2023,231:120846. DOI:10.1016/j.applthermaleng.2023.120846
CAO Yihua, TAN Wenyuan, WU Zhenlong. Aircraft icing:an ongoing threat to aviation safety[J]. Aerospace Science and Technology,2018,75:353. DOI:10.1016/j.ast.2017.12.028
CHANG Shinan, SU Qian, SONG Mengjie. Advanced analytic and control techniques for thermal systems with heat exchangers[M].[S.l.]: Academic Press,2020:337. DOI:10.1016/B978-0-12-819422-5.00016-5
FAKOREDE O, FEGER Z, IBRAHIM H,et al. Ice protection systems for wind turbines in cold climate:characteristics,comparisons and analysis[J]. Renewable and Sustainable Energy Reviews,2016,65:662. DOI:10.1016/j.rser.2016.06.080
OKULOV V, KABARDIN I, MUKHIN D,et al. Physical de-icing techniques for wind turbine blades[J]. Energies,2021,14:6750. DOI:10.3390/en14206750
ZHAO Zehui, CHEN Huawei, LIU Xiaolin,et al. Development of high-efficient synthetic electric heating coating for anti-icing/deicing[J]. Surface & Coating Technology,2018,349:340. DOI:10.1016/jsurf coat.2018.06.011.
FEHER L, SEITZ V, NUSS V. Microwave de-/anti-icing using the midas-technology[J]. Journal of Microwave Power and Electromagnetic Energy,2008,43(1):56. DOI:10.1080/08327823.2008.11688606
XIE Teng, DONG J K, CHEN Haowen,et al. Experimental investigation of deicing characteristics using hot air as heat source[J]. Applied Thermal Engineering,2016,107:681. DOI:10.1016/j.applthermaleng.201 6.05.162
袁起航, 林贵平, 李广超, 等. 电脉冲除冰系统电磁脉冲力仿真分析[J]. 北京航空航天大学学报,2016,42(3):632. YUAN Qihang, LIN Guiping, LI Guangchao,et al. Simulation and analysis on electromagnetic impulse force of electro-impulse de-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(3):632. DOI:10.13700/j.bh.1001-5965.2015.0351
PALANQUE V, POTHIN J, POMMIER-BUDINGER V,et al. Piezoelectric resonant ice protection systems—Part 1/2:prediction of power requirement for de-icing a NACA 0024 leading edge[J]. Chinese Journal of Aeronautics,2024,37(3):92. DOI:10.1016/j.cja.2024.01.001
包明鑫, 苗波, 朱春玲. 压电陶瓷布局对除冰效果的影响研究[J]. 实验流体力学,2021,35(4):73. BAO Mingxin, MIAO Bo, ZHU Chunling. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics,2021,35(4):73. DOI:10.11729/syltlx20200091
陈璐, 马玉敏, 李延. 除冰气囊以及简化模型对气动特性影响研究[J]. 航空工程进展,2024,15(1):157. CHEN Lu, MA Yumin, LI Dan. Research on the influence of deicing airbag and simplified model on aerodynamic characteristics[J]. Advances in Aeronautical Science and Engineering,2024,15(1):157. DOI:10.16615/j.cnki.1674-8190.2024.01.18
LEVIN I A. USSR electric impulse deicing system design[J]. Aircraft Engineering and Aerospace Technology,1972,44(7):7. DOI:10.1108/eb034 921
HAO Lu, LI Qiangying, PAN Weichen,et al. Icing detection and evaluation of the electro-impulse deicing system based on infrared images processing[J]. Infrared Physics & Technology,2020,109(1452):103424. DOI:10.1016/j.infrared.2020.103424
LI Qingying, PAN Weichen, YAO Rao. Ice detection and tracking by the infrared thermography based on the electro-impulse deicing system[J]. Measurement,2022,204(6):112075. DOI:10.1016/j.measurement.2022.112075
MIAO Bo, ZHU Chunling, ZHU Chengxiang,et al. Vibration deicing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):46. DOI:10.11729/syltlx20160010
VENNA S V, LIN Y J, BOTURA G. Piezoelectric transducer actuated leading edge deicing with simultaneous shear and impulse forces[J]. Journal of Aircraft,2007,44(2):509. DOI:10.2514/1.23996
VILLENEUVE E, GHINET S, VOLAT C. Experimental study of a piezoelectric deicing system implemented to rotorcraft blades[J]. Applied Science,2021,11(21):9869. DOI:10.3390/app11219869
WANG Yibing, XU Yuanming, SU Fei. Damage accumulation model of ice detach behavior in ultrasonic deicing technology[J]. Renewable Energy,2020,153(6):1396. DOI:10.1016/j.renene.2020.02.069
BUDINGER M, POMMIER-BUDINGER V, NAPIAS G,et al. Ultrasonic ice protection systems:analytical and numerical models for architecture tradeoff[J]. Journal of Aircraft,2016,53(3):1. DOI:10.2514/1. C033625
OVERMEYER A, PALACIOS J L, SMITH E. Ultrasonic deicing bondline design and rotor ice testing[J]. AIAA Journal,2013,51(12):2965. DOI:10.2514/1.j052601
THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft antiicing and deicing techniques and modeling[J]. Journal of Aircraft,1996,33(5):841. DOI:10.2514/3.47027
SHU Lichun, YU Zhou, HU Qin,et al. Numerical and experimental investigations of deicing performance for the pneumatic impulse deicing method[J]. Journal of Marine Science and Engineering,2023,11(7):1371. DOI:10.3390/jmse11071371
PALACIOS J, WOLFE D, BAILEY M,et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society,2015,60(3):1. DOI:10.4050/JA HS.60.032014
林一, 陈励志. 重型破冰船适用结构规范对比分析[J]. 船海工程,2024,53(3):43. LIN Yi, CHEN Lizhi. Research on structural rules comparison of the heavy icebreaker[J]. Ship & Ocean Engineering,2024,53(3):43. DOI:10.3963/j.issn.1671-7953.2024.03.008
彭泽昆, 朱礼祯, 曹宝根. 极地科考船破冰技术及未来发展路径[J]. 船舶物资与市场,2023,31(9):36. PENG Zekun, ZHU Lizhen, CAO Baogen. Polar research vessel icebreaking technology and future development paths[J]. Marine Equipment/Materials & Marketing,2023,31(9):36. DOI:10.19727/j.cnki. Cbwzysc.2023.09.012
王超, 刘正, 傅江妍, 等. 船舶碎冰区斜航运动的水动力导数预报[J]. 哈尔滨工业大学报,2021,53(12):144. WANG Chao, LIU Zheng, FU Jiangyan. Prediction for hydrodynamic derivatives of ships in oblique motion under brash ice conditions[J]. Journal of Harbin Institute of Technology,2021,53(12):144. DOI:10.111918/202005145
BOSTRÖM M. Breaking the ice:a work domain analysis of icebreaker operations[J]. Cognition Technology & Work,2018,20:443. DOI:10.1007/s10111-018-0482-2
刁峰, 徐伟, 唐旭, 等. 极地双向破冰船破冰能力评估分析[J]. 舰船科学技术,2024,46(9):1. DIAO Feng, XU Wei, TANG Xu,et al. Evaluation and analysis of ice breaking capacity of a double-acting polar ship[J]. Ship Science and Technology,2024,46(9):1. DOI:10.3404/j.issn.1672-7649.2024.09.001
KOZIN V M, CHIZHUMOV S D, ZEMLYAK V L. Influence of ice conditions on the effectiveness of the resonant method of breaking ice cover by submarines[J]. Journal of Applied Mechanics & Technical Physics,2010,51(3):398. DOI:10.1007/s10808-010-0054-6
宋文昊, 毛宏伟, 吴雁. 一种新型辅助破冰装置设计[J]. 科技与创新,2020(5):49. SONG Wenhao, MAO Hongwei, WU Yan. A new type of auxiliary ice-breaking device design[J]. Science and Technology & Innovation,2020(5):49. DOI:10.15913/j.cnki.kjycx.2020.05.017
ZHEN Zekang, SHAO Keke, SONG Mengjie,et al. An experimental study on the effect of CO2 laser powers on melting characteristic of clear ice—Part I:horizontal irradiation[J]. Applied Thermal Engineering,2024,248:123208. DOI:10.1016/j.applthermaleng.2024.123208
CLARK A F, MOULDER J C, REED R P. Ability of a CO2 laser to assist ice breakers[J]. Applied Optics,1973,12:1103. DOI:10.1364/ao.12.001103
ZHEN Zekang, GAO Runmiao, SONG Mengjie,et al. An experimental study on the effect of CO2 laser powers on melting characteristics of clear ice—Part II:vertical irradiation[J]. Applied Thermal Engineering,2024,246:122946. DOI:10.1016/j.applthermaleng.2024.122946
TOSHIMITSU S, HAIK C, TOSHIHIRO S,et al. Studies of melting ice using CO2 laser for ice drilling[J]. Cold Region Science and Technology,2016,121:11. DOI:10.1016/j.coldregions.2015.09.014
SEGERCARANTZ H. Icebreakers-their historical and technical development[J]. Interdisciplinary Science Reviews,1989,14(1):77. DOI:10.1179/isr.1989.14.1.77
倪宝玉, 郭鹏杰, 薛彦卓. 冰水槽内气泡辅助破冰系统的机制实验研究[J]. 哈尔滨工程大学学报,2020,41(6):777. NI Baoyu, GUO Pengjie, XUE Yanzhuo. Experimental study of the mechanism of an air bubbling system in a small ice water tank[J]. Journal of Harbin Engineering University,2020,41(6):777. DOI:10.11990/jheu.201903047
李少峰, 马铁强, 单光坤, 等. 高压射流破冰仿真研究[J]. 机械管理开发,2024,39(4):33. LI Shaofeng, MA Tieqiang, SHAN Guangkun,et al. Simulation study of ice breaking by high pressure jet[J]. Mechanical Management and Development,2024,39(4):33. DOI:10.16525/j.cnki.cn14-1134/th.2024.04.011
王平团, 房玉吉, 吕君. 破冰船压载水调驳辅助破冰技术[J]. 船海工程,2016,45(2):34. WANG Pingtuan, FANG Yuji, LV Jun. On the auxiliary icebreaking technology by barging ballast water for the icebreaker[J]. Ship & Ocean Engineering,2016,45(2):34. DOI:10.3963/j.issn.1671-7953.2016.02.010
ZEMLYAK V L, KOZIN V M, BAURIN N O,et al. The study of the impact of ice conditions on the possibility of the submarine vessels surfacing in the ice cover[J]. Journal of Physics Conference Series,2017,919:012004. DOI:10.1088/1742-6596/919/1/012004

友情链接LINKS