期刊检索

  • 2025年第57卷
  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:孙奕,孙子文.Markov改进演化博弈评估ICPS的动态风险[J].哈尔滨工业大学学报,2025,57(4):84.DOI:10.11918/202405063
SUN Yi,SUN Ziwen.Assessment of dynamic risks in ICPS using Markov-improved evolutionary game theory[J].Journal of Harbin Institute of Technology,2025,57(4):84.DOI:10.11918/202405063
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 69次   下载 40 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Markov改进演化博弈评估ICPS的动态风险
孙奕1,孙子文1,2
(1.江南大学 物联网工程学院,江苏 无锡 214122; 2.物联网技术应用教育部工程研究中心,江苏 无锡 214122)
摘要:
为评估网络攻击下工业信息物理系统(ICPS)的动态风险,研究Markov改进演化博弈模型。根据ICPS中各个漏洞节点,设计从信息域到物理域的系统攻防状态转移图,为Markov改进演化博弈分析提供依据。首先,在单阶段攻防过程中,研究加入参数机制的攻防演化博弈模型,求解拥有不同理性程度和探索程度的攻防主体博弈后的收益。其次,在多阶段攻防中,根据单阶段攻防博弈模型,引入转移概率和折现因子,根据攻防状态转移图求解不同漏洞节点的攻击收益,实现对多阶段攻防对抗的动态推演。最后,利用攻击收益大小对ICPS的动态风险进行评估。本研究分别进行了数值实验分析以及工业信息物理系统模型仿真,使用沸水发电厂作为仿真对象,通过Matlab对Markov改进演化博弈评估方法进行仿真,根据攻击收益评估ICPS的动态风险。结果表明,研究模型重视攻防双方的差异性,能依据攻防双方理性程度及探索程度的不同,合理求出ICPS中攻击者的收益,为ICPS遭受网络攻击下的动态风险评估提供理论基础,对提高工业信息物理系统的安全性提供重要参考依据。
关键词:  工业信息物理系统(ICPS)  演化博弈  Markov决策  攻击收益  系统评估
DOI:10.11918/202405063
分类号:TP273
文献标识码:A
基金项目:国家自然科学基金(61373126);中央高校基本科研业务费用专项资金(JUSRP51310A);江苏省自然科学基金(BK20131107)
Assessment of dynamic risks in ICPS using Markov-improved evolutionary game theory
SUN Yi 1,SUN Ziwen 1,2
(1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China; 2.Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Wuxi 214122, Jiangsu, China)
Abstract:
To evaluate the dynamic risks of industrial cyber-physical saystems (ICPS) under cyber attacks, this study investigates a Markov-improved evolutionary game model. Based on the vulnerability nodes within the ICPS, a system attack-defense state transition diagram from the information domain to the physical domain is designed, providing a foundation for the Markov-improved evolutionary game analysis. First, in the single-stage attack-defense process, an evolutionary game model incorporating a parameter mechanism is studied to determine the payoffs of attack and defense entities with varying degrees of rationality and exploration after the game. Second, in the multi-stage attack-defense process, based on the single-stage attack-defense game model, transition probabilities and discount factors are introduced. The attack payoffs of different vulnerability nodes are calculated according to the attack-defense state transition diagram, enabling dynamic deduction of multi-stage attack-defense confrontations. Finally, the dynamic risks of ICPS are assessed based on the magnitude of attack payoffs. This study conducts numerical experiments and simulations of an industrial cyber-physical system model, using a boiling water power plant as the simulation object. The Markov-improved evolutionary game evaluation method is simulated using Matlab, and the dynamic risks of ICPS are evaluated based on the attack payoffs. The results demonstrate that the proposed model emphasizes the differences between the attack and defense sides, reasonably calculates the attacker’s payoffs in ICPS based on the varying levels of rationality and exploration of both parties. This provides a theoretical foundation for the dynamic risk assessment of ICPS under cyber attacks and offers significant reference value for enhancing the security of industrial cyber-physical systems.
Key words:  industrial cyber-physical systems (ICPS)  evolutionary games  Markov decisions  attack benefits  system evaluation

友情链接LINKS