哈尔滨工业大学学报  2019, Vol. 51 Issue (5): 38-43  DOI: 10.11918/j.issn.0367-6234.201806193
0

引用本文 

杨满中, 彭继华, 韦宇冲. 低氮掺杂对含氢类金刚石结构和力学性能的影响[J]. 哈尔滨工业大学学报, 2019, 51(5): 38-43. DOI: 10.11918/j.issn.0367-6234.201806193.
YANG Manzhong, PENG Jihua, WEI Yuchong. Effect of low nitrogen doping on the microstructure and mechanical properties of hydrogenated diamond-like carbon films[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 38-43. DOI: 10.11918/j.issn.0367-6234.201806193.

基金项目

广州市科技项目(No.201807010091);广东省省级科技计划项目(No.2015B090923006)

作者简介

杨满中(1994—),男,硕士研究生

通信作者

彭继华,E-mail:jhpeng@scut.edu.cn

文章历史

收稿日期: 2018-06-29
低氮掺杂对含氢类金刚石结构和力学性能的影响
杨满中, 彭继华, 韦宇冲     
华南理工大学 材料科学与工程学院, 广州 510641
摘要: 为探讨低氮掺杂对含氢类金刚石组织结构和力学性能的影响.采用非平衡磁控溅射和等离子增强化学气相沉积(PECVD)复合技术,在316不锈钢和硅片上制备碳化钨过渡层和不同掺氮量的含氢类金刚石薄膜(a-C:H(N)).通过拉曼光谱、X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)对薄膜组织结构进行表征,薄膜的硬度和残余应力采用微纳米力学综合测量系统和薄膜应力测量仪进行表征.结果表明随着氮掺杂,薄膜形成碳氮键(CN)且其主要以C=N键形式存在,C=N/CN的比值随着薄膜氮含量增加逐渐下降.同时当掺氮量从0增至0.12 at%时,薄膜ID/IG比值迅速下降,sp2C=C/sp3C-C比值由0.65降至0.563,而薄膜硬度基本不变,约为20.4 GPa,残余应力则由3.35 Gpa降至1.31 GPa;随着掺氮量进一步增加,sp2C=C/sp3C-C比值增加,薄膜硬度迅速下降,残余应力则缓慢降低.可知氮的掺杂对DLC薄膜结构的影响有临界值0.12 at%,当掺氮量低于该值时,氮掺杂促进sp3杂化的形成,薄膜具有较高的sp3杂化含量.而随着薄膜含氮量进一步增加,sp3杂化含量下降.同时当低氮掺杂时,可获得具有较高硬度以及较低残余应力的薄膜.
关键词: 掺氮类金刚石薄膜     PECVD     碳氮键     sp3含量     硬度     残余应力    
Effect of low nitrogen doping on the microstructure and mechanical properties of hydrogenated diamond-like carbon films
YANG Manzhong, PENG Jihua, WEI Yuchong     
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Abstract: This paper aims to study the effect of low nitrogen doping on the microstructure and mechanical properties of hydrogenated diamond-like carbon films. By using unbalanced magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) composite technology, tungsten carbide transition layer and hydrogenated diamond-like carbon films with different nitrogen content (a-C:H(N)) were prepared on 316 stainless steel and silicon substrates. The microstructures of the films were characterized by Raman spectroscopy, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The hardness and residual stress of the films were characterized by micro and nano mechanical comprehensive measurement system and film stress measuring instrument. Results show that with nitrogen doping, carbon-nitrogen bond (CN) was formed in the films and mainly existed in the form of C=N bond, and the ratio of C=N/CN decreased with the increase of nitrogen content. When the nitrogen content increased from 0 to 0.12 at%, the ID/IG ratio of the film decreased rapidly, the ratio of sp2C=C/sp3C-C decreased from 0.65 to 0.563, whereas the hardness of the films remained unchanged at about 20.4 GPa, and the residual stress decreased from 3.35 GPa to 1.31 GPa. With the increase of nitrogen content, the ratio of sp2C=C/sp3C-C increased, the hardness of the films decreased rapidly, and the residual stress decreased slowly. The effect of nitrogen doping on the microstructure of DLC films has a critical value of 0.12 at%. When the amount of nitrogen doping is lower than this value, it promotes the formation of sp3 hybridization, and the film has high sp3 hybridization, while the sp3 hybridization of the films decreases with the increase of nitrogen, and the sp3 hybridization decreases. The films with higher hardness and lower residual stress can be obtained with low nitrogen doping.
Keywords: nitrogen-doped diamond-like carbon films     PECVD     carbon-nitrogen bond(CN)     sp3 content     hardness     residual stress    

类金刚石薄膜是以sp3、sp2杂化键结合为主体的长程无序三维网状结构,具有一系列特殊的物理和化学性能,如硬度高、化学稳定、高耐磨性等,在材料、机械、医学、航空航天等领域有广泛应用前景[1-2].但是DLC薄膜结合力较差,内应力较高,在较高的温度下会发生sp3→sp2转变,甚至石墨化[3-5].

氮元素掺杂既可以取代非晶碳基网络结构中的碳原子,也可以取代氢原子与碳原子键合[6],提高薄膜的热稳定性.同时碳氮键合引起薄膜结构弛豫从而使得残余内应力下降,可增强薄膜附着力[7-8].并且sp3杂化碳原子与氮原子键合(sp3C-N)可以形成类β-C3N4结构[9-10],可以缓解掺氮引起的sp2杂化含量增加而造成的硬度下降.有少量报道指出掺杂较低含量的氮有助于促进薄膜中碳-碳键以sp3形式存在[11].另外氮掺杂对DLC薄膜导电性具有明显的影响[12].

虽然已有上述研究报道,但宽氮含量范围内,氮对DLC薄膜组织结构的影响规律和机理认识尚有不足.本文控制氮气流量占总工作气体流量百分比在0~20%范围内,采用等离子增强化学气相沉积的方法制备a-C:H(N)薄膜,结合多种分析手段研究DLC薄膜在低氮掺杂时的碳氮键合形式、sp3杂化含量和力学性能的变化,并探讨其对薄膜组织结构影响机理,开发具有较高硬度和较低内应力的薄膜.这对a-C:H(N)薄膜的应用具有重要意义.

1 实验概况 1.1 a-C:H(N)薄膜的制备

采用型号为Hauzer Flexicoat®850涂层设备,在316奥氏体不锈钢(20 mm×20 mm×5 mm)和Si(100)片(50 mm×10 mm×0.6 mm)上制备了WC/a-C:H(N)薄膜.先利用WC靶(99.99%),采用非平衡磁控溅射的方法制备过渡层;然后以乙炔(C2H2,99.999%)作为碳源,氮气作为氮源(N2,99.999%), 设置不同的N2/(C2H2+N2)流量比,采用PECVD的方法制备a-C:H(N)薄膜.具体工艺参数如表 1所示.本研究中镀膜前样品先后在丙酮、乙醇和去离子水中超声波辅助清洗20 min,以获得清洁表面.

表 1 a-C:H(N)薄膜沉积工艺参数 Tab. 1 Process parameters of a-C:H(N) thin film deposition
1.2 a-C:H(N)薄膜组织结构和力学性能表征

为分析薄膜组织结构.采用岛津D/MAX-2500/PC型X射线衍射仪检测分析N-DLC薄膜结晶状态,薄膜化学键组成和相对百分比含量采用LabRAM Aramis拉曼光谱仪和日本Axis Ultra DLD型X射线光电子能谱仪进行分析.利用NOVA NANOSEM 430型扫描电镜对薄膜的表面形貌进行表征.

为了分析薄膜的性能.采用FST1000型薄膜应力测量仪检测硅片沉积前后的曲率,并利用如下所示的Stoney公式计算薄膜内应力[13].

$ \sigma = \frac{{{E_{\rm{s}}}}}{{6(1 - {\upsilon _{\rm{s}}})}}\frac{{h_{\rm{s}}^2}}{{{h_{\rm{f}}}}}\left( {\frac{1}{R} - \frac{1}{{{R_{\rm{o}}}}}} \right). $ (1)

式中:Es为硅片的杨氏模量;hs为硅片的厚度;νs为硅片的泊松比;hf为薄膜的厚度;R0为镀膜前硅片的曲率半径;R为镀膜后的曲率半径.

采用纳米综合力学测量系统测量不同掺氮量薄膜的纳米硬度,加载力为5 mN,加载速率为10 mN/min,每个样品随机采集6个点,取其算术平均值.

2 结果及分析 2.1 氮掺杂对a-C:H(N)薄膜组织结构的影响

针对不同N2/(C2H2+N2)流量比所制备的a-C:H(N)薄膜,利用XPS检测其中C1s和N1s的峰高比可知薄膜含氮量随着流量比变化趋势, 其结果如表 2所示.可知随着N2/(C2H2+N2)流量比增加,薄膜含氮量增加.即随着氮气流量增加,薄膜含氮量增加.图 1为不同掺氮量a-C:H(N)薄膜的XRD图谱,图中曲线均呈现出典型的非晶材料的“漫散射峰”,因此a-C:H(N)薄膜均为非晶碳膜.

表 2 不同N2/(C2H2+N2)流量比所制备a-C:H(N)薄膜含氮量变化 Tab. 2 Changes of nitrogen content in a-C:H(N) films prepared with different N2/(C2H2+N2) flow ratios
图 1 a-C:H和N2.95at%-DLC薄膜XRD检测分析结果 Fig. 1 Detection and analysis of a-C:H and N2.95at%-DLC films by XRD

图 2为不同N2/(C2H2+N2)流量比所制备的a-C:H(N)薄膜表面10 000倍SEM形貌图像.薄膜表面由尺寸和形状不一的非晶岛紧密排列组成.随着氮含量增加,岛状颗粒尺寸大小和不均匀程度增加.这可能与氮离子相对于氢的刻蚀作用较弱有关[14].本研究所采用偏压较高,随着掺氮量增加,氮离子数量增加,高能离子对薄膜表面刻蚀作用减弱,非晶岛状颗粒尺寸大小和表面粗糙程度增加.

图 2 不同N2/(C2H2+N2)流量比所制备a-C:H(N)薄膜表面形貌 Fig. 2 SEM morphologies of a-C:H(N) films prepared by different N2/ (C2H2+N2) flow ratios

类金刚石薄膜的拉曼光谱可以利用高斯分峰拟合为波数在1 360 cm-1左右的D峰和波数1 580cm-1左右的G峰,其中D峰对应于环状sp2杂化键的振动,而G峰对应于环状或者链状sp2杂化键的振动[15, 16].a-C:H(N)薄膜拉曼曲线如图 3(a)所示,对拉曼曲线进行分峰拟合,结果如图 3(b)所示.其结果表明,随着氮掺杂含量的增加,存在一个氮掺杂量的临界值0.12 at%,ID/IG的比值先迅速下降后缓慢增加,G峰的半峰宽从迅速减小转变为缓慢减小,G峰的峰位向高波数方向从迅速移动转变为缓慢移动.而ID/IG的比值可以估算sp2团簇尺寸大小和sp3杂化的相对含量[17],G峰的半峰宽对键角和键长引起的结构紊乱敏感,G峰的峰位与sp2团簇的数量和大小有关[18-20].这表明随着氮的掺杂和含量的增加,sp2团簇的尺寸大小先减小后增加,非晶薄膜结构的紊乱程度下降,薄膜中sp3杂化含量先增加后减小.

图 3 a-C:H(N)薄膜拉曼曲线(a)和拟合分析结果(b) Fig. 3 Raman curves of a-C:H(N) films and fitting analysis results

进一步分析薄膜各元素键合形式及其相对百分比,对a-C:H(N)薄膜进行XPS检测分析.在以往的文献中,C1s和N1s能级谱通过曲线拟合被分解成若干组分,而不同掺氮量下C1s不同组分的键能存在位移[12, 21-23].本研究将XPS检测得到的C1s和N1s能级谱进行校准和G-L拟合[24].N2.95at%-DLC薄膜C1s光谱分峰拟合为6个峰; sp2C=C(284.15eV), sp3C-C(284.83eV), C=N(285.7eV), C-O(286.3eV), C-N(287.15eV), C=O(288.17eV),其结果如图 4(a)所示.将N1s进行分峰拟合成4个峰:C-N(398.44eV), C≡N(399.22eV), C=N(399.49eV)和N-O(402eV),结果如图 4(b)所示.而a-C:H(N)薄膜中杂化键sp2C=C/sp3C-C比值和C=N/CN(C-N+C=N+C≡N)比值变化如图 5所示.图中氧峰可能来自于样品表面吸附氧和真空室氧气残留物[25].本文实验发现随着薄膜中氮含量自0到0.12 at%,sp2C=C/sp3C-C的比值迅速从0.65下降到0.563,当氮含量超出此上述范围,随着氮含量的增加,sp2C=C/sp3C-C的比值逐渐增加[11].以上变化趋势得到拉曼分析结果证实.显然氮掺杂影响了薄膜中sp3杂化含量,且存在一个临界氮掺杂值:当低于此值时,氮掺杂迅速地增加薄膜中的sp3杂化含量;而超过此值时则使薄膜中sp3杂化含量逐渐减少,即促进sp2团簇的形成.考虑氮替代薄膜中的元素而导致结构转变,不可能在零氮含量时发生结构突变,因此必然存在一个临界值.本文限于控氮手段限制,测试结果虽不尽精确,但0.12at%氮含量的临界值应算合理.

图 4 N2.95at%-DLC薄膜C1s能谱和N1s能谱分峰结果 Fig. 4 Peak splitting results of N2.95at%-DLC films by C1s and N1s spectra
图 5 a-C:H(N)薄膜sp2C=C/sp3C-C比值和C=N/CN比值变化 Fig. 5 Changes of sp2C=C/sp3C-C and C=N/CN ratio of a-C:H(N) films

图 5也可以看出CN键的主要键合形式为C=N键,且随着氮掺杂含量的增加,C=N/CN比值下降[18].其原因可能是:CN键的键能比CC键键能高,而团簇界面处能量高,C=N键倾向于在界面处形成且与sp2C=C键构成sp2团簇,而C≡N键和C-N键在团簇界面处形成且与sp3C-C键构成sp3杂化[23, 26].本研究采用较高的偏压和控制线圈电流来提高工作气体的离化率.氮气流量低时,氮离子的能流密度低,而C=N键的键能较C-N键弱,氮离子倾向于与团簇界面处的不稳定碳形成C=N键[26].从而使薄膜中氮的键合形式主要为C=N键;随着氮气流量的增加,活性氮离子浓度增加,其能流密度增加,提高形成具有更高键能的键合形式的几率,C=N/CN比值下降.从氮元素键合形式的变化,可以探讨低氮掺杂对a-C:H(N)薄膜组织结构影响的可能机理:氮元素对薄膜sp3杂化含量的影响存在一个临界值.薄膜氮含量自0升到0.12 at%时,C=N键在团簇界面处的形成对sp2团簇起到钉扎作用,抑制sp2团簇形成长大,薄膜sp3杂化含量增加;当薄膜氮含量大于0.12at%时,C=N/CN比值下降,同理sp3杂化长大所受到的抑制作用增强而sp2团簇长大抑制作用减弱,促进sp2团簇尺寸大小和数量的增加.即氮元素的键合形式对薄膜sp3杂化和sp2团簇的形成和长大存在一个此消彼长的抑制作用,且其存在一个临界值.从中可知a-C:H(N)薄膜含氮量不同,氮的各种键合形式的百分占比发生变化,进而会影响薄膜的组织结构.

2.2 氮掺杂对a-C:H(N)薄膜力学性能的影响

图 6为a-C:H(N)薄膜残余应力和纳米硬度检测结果.图 6(a)可以看出薄膜含氮量为0.12 at%时,薄膜残余应力为1.31 GPa,与a-C:H薄膜相比,残余应力迅速地下降了2.04 GPa.薄膜氮含量增加,薄膜残余应力虽有起伏,但总体呈缓慢下降趋势.a-C:H(N)薄膜残余应力变化可以用原位应力释放和钉扎效应来解释[27]:随着氮掺杂,氮与碳键合,而CN键的键长较CC键短,薄膜无序度下降,结构发生弛豫[28],残余应力大幅下降.而随着薄膜氮含量增加,大量的CN键在团簇界面处形成,形成钉扎效应,抑制薄膜结构的进一步弛豫,从而抑制了残余应力的下降.同时从图 6(b)中可知a-C:H(N)薄膜纳米硬度随着氮掺杂的进行呈下降趋势.在氮掺杂量低于0.12 at%时,薄膜中sp3含量虽较高,但是由于CN键的形成,结构发生弛豫,因而其硬度变化不大.但随着掺氮量的增加,sp3杂化含量下降,薄膜纳米硬度较快速地下降.

图 6 a-C:H(N)薄膜sp2C=C/sp3C-C比值和残余应力、纳米硬度变化 Fig. 6 Changes of sp2C=C/sp3C-C ratio with residual stress and nano-hardness of a-C:H(N) films
3 结论

1) 本文制备所得a-C:H(N)薄膜均为非晶碳膜.随着掺氮量增加,其ID/IG比值先迅速下降后缓慢增加,G峰的半峰宽从迅速减小转化为缓慢减小,G峰的峰位向高波数方向从迅速移动转变为缓慢移动,sp3杂化含量先增加后减少,非晶薄膜结构的紊乱程度下降.趋势变化出现拐点的薄膜氮含量为0.12 at%.

2) 本研究中氮与碳键合且主要以C=N键的形式存在.而氮元素的键合形式对a-C:H(N)薄膜sp3和sp2团簇的形成和长大存在一个此消彼长的抑制作用,且其存在一个含氮量临界值0.12 at%.掺氮量低时,C=N键百分占比高而抑制sp2团簇长大,使薄膜相比a-C:H薄膜有较高的sp3含量;随着薄膜氮含量增加,C=N/CN比值下降,对sp2团簇长大的抑制作用减弱,薄膜中sp3杂化含量下降.

3) 随着氮掺杂进行,氮与碳键合,键角无序度下降,薄膜结构发生弛豫,残余应力下降了2.04 GPa.而随着薄膜含氮量的进一步增加,薄膜残余应力变化不大.同时a-C:H(N)薄膜纳米硬度随薄膜含氮量增加而下降.当掺氮量较低时,可以获得表面平整均匀,具有较高硬度以及较低残余应力的薄膜.

参考文献
[1]
Das D, BANERJEE A. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon[J]. Applied Surface Science, 2015, 345: 204. DOI:10.1016/j.apsusc.2015.03.124
[2]
UCUN I, ASLANTAS K, BEDIR F. The performance of DLC-coated and uncoated ultra-fine carbide tools in micromilling of Inconel 718[J]. Precision Engineering, 2015, 41: 135. DOI:10.1016/j.precisioneng.2015.01.002
[3]
CHIU H C, PENG L Y, WANG H Y, et al. High thermal stability of GaN Schottky diode with diamond-like carbon(DLC) anode design[J]. Journal of the Electrochemical Society, 2016, 163(3): H155-H158. DOI:10.1149/2.0241603jes
[4]
JONGWANNASIRI C, LI X, WATANABE S. Improvement of thermal stability and tribological performance of diamond-like carbon composite thin films[J]. Materials Sciences and Applications, 2013, 4(10): 630. DOI:10.4236/msa.2013.410077
[5]
吴忠振, 田修波, 程思达, 等. 高结晶度CrN纳米粒子掺杂的DLC薄膜的显微结构及力学性能[J]. 金属学报, 2012, 48(3): 283.
WU Z Z, TIAN X B, CHENG S D, et al. Microstructure and mechanical properties of DLC films doped with high crystallinity CrN nanoparticles[J]. Acta Metallurgica Sinica, 2012, 48(3): 283. DOI:10.3724/SP.J.1037.2011.00512
[6]
薛群基, 王立平. 类金刚石碳基薄膜材料[M]. 北京: 科学出版社, 2012: 112.
XUE Q J, WANG L P. Diamond-like carbon film materials[M]. Beijing: Science Press, 2012: 112.
[7]
LIN J F, WAN Z C, WEI P J, et al. Effect of nitrogen content on mechanical properties and tribological behaviors of hydrogenated amorphous carbon films prepared by ion beam assisted chemical vapor deposition[J]. Thin Solid Films, 2004, 466(1): 137.
[8]
JAN D J, AI C F, LEE C C. Deposition of nitrogen-containing diamond-like carbon films on acrylic substrates by an ion beam process[J]. Vacuum, 2004, 74(3-4): 531. DOI:10.1016/j.vacuum.2004.01.024
[9]
WEI B, ZHANG B, JOHNSON K E. Nitrogen-induced modifications in microstructure and wear durability of ultrathin amorphous-carbon films[J]. Journal of Applied Physics, 1998, 83(5): 2491. DOI:10.1063/1.367009
[10]
ZOU Y S, WANG Q M, DU H, et al. Structural characterization of nitrogen doped diamond-like carbon films deposited by arc ion plating[J]. Applied Surface Science, 2005, 241(3-4): 295. DOI:10.1016/j.apsusc.2004.07.043
[11]
SUN L, LI H K, LIN G Q, et al. Influence of deposition parameters on the microstructure and properties of nitrogen-doped diamond like carbon films[J]. Journal of Vacuum Science & Technology A, 2010, 28(6): 1299. DOI:10.1116/1.3482010
[12]
TSUCHIYA M, MURAKAMI K, MAGARA K, et al. Structural and electrical properties and current-voltage characteristics of nitrogen-doped diamond-like carbon films on Si substrates by plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 2016, 55(6): 065502. DOI:10.7567/JJAP.55.065502
[13]
SHIRI S, ASHTIJOO P, ODESHI A, et al. Evaluation of Stoney equation for determining the internal stress of DLC thin films using an optical profiler[J]. Surface & Coatings Technology, 2016, 308. DOI:10.1016/j.surfcoat.2016.07.098
[14]
SETSUO N, TETSUO S, TSUTOMU S, et al. Optical and electrical properties of nitrogen-doped diamond-like carbon films prepared by a bipolar-type plasma-based ion implantation[J]. Japanese Journal of Applied Physics, 2012, 51(1). DOI:10.1143/JJAP.51.01AC04
[15]
HADDOCK D, PARKER T, SPINDLOE C, et al. Characterisation of diamond-like carbon (DLC) laser targets by Raman spectroscopy[C]. Journal of Physics: Conference Series, IOP Publishing, 2016: 012007. DOI: 10.1088/1742-6596/713/1/012007
[16]
FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095. DOI:10.1103/PhysRevB.61.14095
[17]
TAMOR M A, VASSELL W C. Raman "fingerprinting" of amorphous carbon films[J]. Journal of Applied Physics, 1994, 76(6): 3823. DOI:10.1063/1.357385
[18]
CASIRAGHI C, FERRARI A C, ROBERTSON J. Raman spectroscopy of hydrogenated amorphous carbons[J]. Physical Review B Condensed Matter, 2005, 72(8): 85401. DOI:10.1103/PhysRevB.72.085401
[19]
BHATTACHARYYA S, CARDINAUD C, TURBAN G. Spectroscopic determination of the structure of amorphous nitrogenated carbon films[J]. Journal of Applied Physics, 1998, 83(8): 4491. DOI:10.1063/1.367211
[20]
杨义勇, 彭志坚, 付志强, 等. 多组分缓冲层W梯度掺杂DLC复合薄膜研究[J]. 金属学报, 2010, 46: 34.
YaNG Y Y, PENG Z J, FU Z Q, et al. Study on W graded doping DLC composite films with multicomponent transition layer[J]. Acta Metallurgica Sinica, 2010, 46(46): 34.
[21]
MANSOUR A, UGOLINI D. Photoelectron-spectroscopy study of amorphous a-CNx:H[J]. Physical Review B Condensed Matter, 1993, 47(16): 10201. DOI:10.1103/PhysRevB.47.10201·
[22]
SCHARF T W, OTT R D, YANG D, et al. Structural and tribological characterization of protective amorphous diamond-like carbon and amorphous CNx overcoats for next generation hard disks[J]. Journal of Applied Physics, 1999, 85(6): 3142. DOI:10.1063/1.369654
[23]
SEKER Z, OZDAMAR H, ESEN M, et al. The effect of nitrogen incorporation in DLC films deposited by ECR Microwave Plasma CVD[J]. Applied Surface Science, 2014, 314(10): 46. DOI:10.1016/j.apsusc.2014.06.137
[24]
SHENG R D, LI L J, SU D Y, et al. Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment[J]. Diamond & Related Materials, 2018, 81: 146. DOI:10.1016/j.diamond.2017.12.002
[25]
HÖGSTRÖM J, ANDERSSON M, JANSSON U, et al. On the evaluation of corrosion resistances of amorphous chromium-carbon thin-films[J]. Electrochimica Acta, 2014, 122: 224. DOI:10.1016/j.electacta.2013.11.130
[26]
BHATTACHARYYA S, HONG J, TURBAN G. Determination of the structure of amorphous nitrogenated carbon films by combined Raman and x-ray photoemission spectroscopy[J]. Journal of Applied Physics, 1998, 83(7): 3917. DOI:10.1063/1.367312
[27]
马一博, 陈牧, 颜悦, 等. 薄膜应力测量方法及影响因素研究进展[J]. 航空材料学报, 2018, 38(1): 17.
MA Y B, CHEN M, YAN Y, et al. Research progress of thin film stress measurement methods and influencing factors[J]. Journal of Aeronautical Materials, 2018, 38(1): 17. DOI:10.11868/j.issn.1005-5053.2017.000126
[28]
KHUN N W, LIU E, GUO H W. Cyclic voltammetric behavior of nitrogen-doped tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc[J]. Electroanalysis, 2010, 20(17): 1851. DOI:10.1002/elan.200804249