Fractional linear maps have been studied extensively[1-3]. A special form of Ricatti map, so-called Beverton-Holt map
$ h(x)=\frac{\mu K x}{K+(\mu-1) x} $ |
is deeply concerned. This map originated from an investigation of the reaction of species to periodically changing living environment, where μ>0 denotes intrinsic growth rate and K>0 expresses carrying capacity of the environment.
The Beverton-Holt equation models density dependent growth which shows compensation as opposed to over-compensation. This equation takes the following form:
$ x_{n+1}=\frac{\mu K x_n}{K+(\mu-1) x_n}, x_0>0, \mu>0, K>0 $ | (1) |
Obviously, x=0 is a fixed point of Eq.(1). It is globally asymptotical stable if μ∈(0, 1). x=K is another fixed point, and is globally asymptotical stable for μ>1.
It is known that living environment surrounding the species influences the population dramatically. In Ref. [4], authors considered a situation where carrying capacity K fluctuates periodically with a minimal integer period p as a result of seasonally varying environment. Then Eq. (1) becomes
$ x_{n+1}=\frac{\mu K_n x_n}{K_n+(\mu-1) x_n}, x_0>0, K_n>0 $ | (2) |
where Kn+p=Kp, n=0, 1, 2, ….
Let
$ f_i(x)=\frac{\mu K_i x}{K_i+(\mu-1) x}, i=0, 1, \cdots $ |
then a (nonautonomous) difference system with period p is obtained.
$ x_{n+1}=f_n\left(x_n\right), f_{n+p}(x)=f_n(x), n=0, 1, \cdots $ | (3) |
In Ref.[5], Cushing and Henson made two conjectures for p-periodic Beverton-Holt Eq. (2) when μ>1 and p≥2:
Conjecture (Conj.) 1 A positive p-periodic solution
Conjecture (Conj.) 2 This p-periodic solution is attenuant, that is
$ a v\left(\bar{x}_n\right)=\frac{1}{p} \sum\limits_{i=0}^{p-1} \bar{x}_i<a v\left(K_n\right)=\frac{1}{p} \sum\limits_{i=0}^{p-1} K_i $ |
The correctness of Conj.2 means that a varying habitat harms the population. That is to say, the average population is less in a periodically oscillating habitat than it is in a constant habitat with the same average[6].
Elaydi and Sacker proved these two conjectures in Refs. [7] and [8]. There are other creative works relating the average
In Ref. [11], Haskell et al. studied the attenuation of Beverton-Holt equation when μ=μn is also p-periodic. They gave a condition on μn and Kn to make the second conjecture true.
Refs.[12] and [13] proved the existence and globally asymptotically stability of periodic orbit of period r for periodic nonautonomous difference equations via the concept of skew-product dynamical systems.
In present work, we investigate the Beverton-Holt equation for the case of changing μn and Kn periodically with same period p. Some sufficient conditions are obtained to guarantee the attenuation of periodic solution for p-periodic Beverton-Holt equation. Our proof about the attenuation is different from that in Ref. [11].
1 Average of Periodic CycleAs mentioned above, it is already known that Conj. 1 and Conj. 2 are correct for constant μ and periodically changing Kn. However, the situation is drastically different if μ is also p-periodic. That is to say, the intrinsic growth rate of the species also changes periodically with time.
Consider Eq. (2) with p-periodic μn,
$ x_{n+1}=f_n\left(x_n\right)=\frac{\mu_n K_n x_n}{K_n+(\mu-1) x_n}, n=0, 1, \cdots $ | (4) |
where μn and Kn have the same minimal period p≥2 satisfying μn>1, Kn>0.
The existence and globally asymptotically stability of p-cycle
Ref.[14] extends Conj.2 to Eq. (4). The following inequality is obtained:
$ a v\left(\tilde{x}_n\right)<\frac{\mu_{\max }}{\mu_{\min }} \cdot \frac{\mu_{\max }-1}{\mu_{\min }-1} \cdot a v\left(K_n\right) $ |
where
As for the average of p-cycle{
Proposition 1 If Ki≠Ki+1 for at least one i∈{0, 1, …, p-1}, hen for any p-periodic solution
$ K_{\min }<a v\left(\tilde{x}_n\right)<K_{\max } $ |
where
Proof Define
$ f_i(x)=\frac{\mu_i K_i x}{K_i+\left(\mu_i-1\right) x}, i=0, 1, \cdots, p-1 $ |
and F(x)=fp-1°fp-2°…°f1°f0(x). Clearly,
$ F(x)=\frac{\mu_{p-1} \cdots \mu_0 K_{p-1} \cdots K_0}{K_{p-1} \cdots K_0+E_{p-1} x} \cdot x $ |
where Ei satisfies the linear difference equation below:
$ \begin{gathered} E_i=K_i E_{i-1}+\left(\mu_i-1\right) \mu_{i-1} \cdots \mu_0 K_{i-1} \cdots K_0 \\ E_0=\mu_0-1, i=0, 1, \cdots, p-1 \end{gathered} $ |
So
$ E_{p-1}=K_{p-1} \cdots K_0 \cdot \sum\limits_{i=0}^{p-1} \frac{\left(\mu_i-1\right) \mu_{i-1} \cdots \mu_0}{K_i} $ |
Fixed point
$ \tilde{x}_0=\frac{K_{p-1} \cdots K_0\left(\mu_{p-1} \cdots \mu_0-1\right)}{E_{p-1}}=\frac{1}{\frac{r_{p-1}}{K_{p-1}}+\cdots+\frac{r_0}{K_0}} $ |
where coefficients ri are defined as follows:
$ r_i=\left\{\begin{array}{l} \frac{\mu_0-1}{\mu_{p-1} \cdots \mu_0-1}, i=0 \\ \frac{\left(\mu_i-1\right) \mu_{i-1} \cdots \mu_0}{\mu_{p-1} \mu_{p-2} \cdots \mu_0-1}, i=1, 2, \cdots, p-1, \end{array}\right. $ | (5) |
where
If Ki≠Ki+1 for at least one i∈{0, 1, …, p-1}, there is
$ K_{\min }=\frac{1}{\frac{r_{p-1}}{K_{\min }}+\cdots+\frac{r_0}{K_{\min }}}<\tilde{x}_0<\frac{1}{\frac{r_{p-1}}{K_{\max }}+\cdots+\frac{r_0}{K_{\max }}}=K_{\max } $ | (6) |
Since
$ \tilde{x}_1=f_0{ }^{\circ} {f_{p-1}} ^{\circ} {f_{p-2}} ^{\circ} \cdots ^{\circ} f_1\left(\tilde{x}_1\right)=F_1\left(\widetilde{x_1}\right) $ |
where F1(x1)=f0°fp-1°fp-2°…°f1(x1). By the symmetry, there is
$ \tilde{x}_1=\frac{K_0 K_{p-1} \cdots K_1\left(\mu_0 \mu_{p-1} \cdots \mu_1-1\right)}{E_{p-1}^1}=\frac{1}{\frac{r_{p-1}^1}{K_0}+\cdots+\frac{r_0^1}{K_1}} $ |
where
$ \begin{gathered} E_{p-1}^1=K_0 K_{p-1} \cdots K_1 \cdot \sum\limits_{i=0}^{p-1} \frac{\left(\mu_{i+1}-1\right) \mu_i \cdots \mu_1}{K_{i+1}}, \\ K_p=K_0, \mu_p=\mu_0 \end{gathered} $ |
and
$ r_i^1=\left\{\begin{array}{l} \frac{\mu_1-1}{\mu_0 \mu_{p-1} \cdots \mu_1-1}, i=0 \\ \frac{\left(\mu_{i+1}-1\right) \mu_i \cdots \mu_1}{\mu_0 \mu_{p-1} \cdots \mu_1-1}, i=1, 2, \cdots, p-1 \end{array}\right. $ | (7) |
where
Similar to Eq. (6), there is
$ \begin{aligned} K_{\min }=& \frac{1}{\frac{r_{p-1}^1}{K_{\min }}+\cdots+\frac{r_0^1}{K_{\min }}}<\tilde{x}_1<\\ & \frac{1}{\frac{r_{p-1}^1}{K_{\max }}+\cdots+\frac{r_0^1}{K_{\max }}}=K_{\max } \end{aligned} $ | (8) |
By the same way, there is
$ K_{\min }<\tilde{x}_i<K_{\max }, i=2, 3, \cdots, p-1 $ | (9) |
because
This means
Proposition 2 If Ki≠Ki+1 for at least one i∈{0, 1, …, p-1}, then for any p-periodic solution of difference Eq. (4) with μn>1, Kn>0, there is
$ a v\left(\tilde{x}_n\right)<\frac{\mu_{\max }}{\mu_{\min }-1} \cdot a v\left(K_n\right) $ |
Proof The proposition is correct because
$ a v\left(\tilde{x}_n\right)=\frac{1}{p} \sum\limits_{i=0}^{p-1} \tilde{x}_i=\frac{1}{p} \sum\limits_{i=0}^{p-1} \tilde{x}_{i+1}= \\ \frac{1}{p} \sum\limits_{i=0}^{p-1} \frac{\mu_i K_i \tilde{x}_i}{K_i+\left(\mu_i-1\right) \tilde{x}_i}= \\ \frac{1}{p} \sum\limits_{i=0}^{p-1} \frac{\frac{\mu_i K_i}{\mu_i-1} \cdot\left(\frac{\mu_i-1}{K_i} \tilde{x}\right)}{1+\frac{\mu_i-1}{K_i} \tilde{x}_i}< \\ \frac{1}{p} \sum\limits_{i=0}^{p-1} \frac{\mu_i K_i}{\mu_i-1}<\frac{\mu_{\max }}{\mu_{\min }-1} \cdot a v\left(K_n\right) $ |
The following theorem summarizes the above conclusions.
Theorem 1 For any p-periodic solution of difference Eq. (4) with μn>1, Kn>0 and Ki≠Ki+1 for at least one i∈{0, 1, …, p-1}, the following inequalities hold:
$ \begin{aligned} &K_{\min }<a v\left(\tilde{x}_n\right)< \\ &\min \left\{K_{\max }, \frac{\mu_{\max }}{\mu_{\min }-1} \cdot a v\left(K_n\right), \frac{\mu_{\max }}{\mu_{\min }} \cdot \frac{\mu_{\max }-1}{\mu_{\min }-1} \cdot a v\left(K_n\right)\right\} \end{aligned} $ |
Theorem 1 shows a concrete range of
In this section, an extension of Conj. 2 to Eq. (4) is discussed. The following example illustrates that Conj. 2 may not hold for some p-periodic μn and Kn.
Example 1 Taking p=2, μ0=2, μ1=3, K0=3, K1=4 in Eq. (4), 2-periodic solution {15/4, 10/3} and av(Kn)=85/24>av(Kn)=7/2 can be easily obtained.
Two theorems about the attenuation of periodic solution of Eq. (4) for periodically changing μi and Ki are proved in this section. Our proofs are more direct and different from those in Ref. [11]. Firstly, a lemma is proved which will be used below.
Lemma 1 The following inequality is true for ai>0, xi>0, i=1, 2, …n,
$ \begin{gathered} \frac{x_1 x_2 \cdots x_n}{a_1 x_2 \cdots x_n+\cdots+a_n x_1 x_2 \cdots x_{n-1}} \leqslant \\ a_1 x_1+a_2 x_2+\cdots+a_n x_n \end{gathered} $ |
where
Proof This lemma can be proved easily by applying Jessen's inequality to the convex function h(x)=x-1 defined on (0, +∞).
Next the conditions on Eq.(4) is explored to prove Conj. 2 is true.
Recalling the proof of Proposition 1,
$ \tilde{x}_0=\frac{K_{p-1} K_{p-2} \cdots K_0}{r_{p-1} K_{p-2} \cdots K_0+\cdots+r_0 K_{p-1} \cdots K_1} $ |
where all ri are given by Eq. (5). With Lemma 1, there is
$ \tilde{x}_0<r_{p-1} K_{p-1}+\cdots+r_0 K_0 $ | (10) |
By
$ \widetilde{x}_1=\frac{K_{p-1} K_{p-2} \cdots K_0}{\frac{r_{p-1}}{\mu_0 \prod\limits_{j \neq p-1}} K_j+\cdots} \rightarrow \\ \;\;\;\;\;\leftarrow \frac{1}{+\frac{r_1}{\mu_0} \prod\limits_{j \neq 1} K_j+\mu_{p-1} \cdots \mu_1 r_0 \prod\limits_{j \neq 0} K_j} $ |
Since
$ \frac{r_{p-1}}{\mu_0}+\cdots+\frac{r_1}{\mu_0}+\mu_{p-1} \cdots \mu_1 r_0=1 $ |
the following inequality is obtained:
$ \tilde{x}_1<\frac{r_{p-1}}{\mu_0} K_{p-1}+\cdots+\frac{r_1}{\mu_0} K_1+\mu_{p-1} \cdots \mu_1 r_0 K_0 $ | (11) |
In the same way, there is
$ \begin{aligned} &\tilde{x}_i=\frac{K_{p-1} K_{p-2} \cdots K_0}{\frac{1}{\mu_{i-1} \cdots \mu_0} \cdot \sum\limits_{t=i}^{p-1} r_t \prod\limits_{j \neq t} K_j+\cdots} \rightarrow\\ &\longleftarrow \frac{1}{+\mu_{p-1} \cdots \mu_i \cdot \sum\limits_{t=0}^{i-1} r_t \prod\limits_{j \neq t} K_j} \text {, }\\ &i=2, \cdots, p-1 . \end{aligned} $ |
It is easy to check
$ \frac{1}{\mu_{i-1} \cdots \mu_0} \cdot \sum\limits_{t=i}^{p-1} r_t+\cdots+\mu_{p-1} \cdots \mu_i \cdot \sum\limits_{t=0}^{p-1} r_t=1 $ |
Therefore
$ \begin{gathered} \tilde{x}_i<\frac{1}{\mu_{i-1} \cdots \mu_0} \cdot \sum\limits_{i=i}^{p-1} r_t K_t+\mu_{p-1} \cdots \mu_i \cdot \sum\limits_{t=0}^{i-1} r_t K_t, \\ i=2, \cdots, p-1 \end{gathered} $ | (12) |
For
$ \begin{aligned} &\widetilde{x}_{p-1}=\frac{K_{p-1} K_{p-2} \cdots K_0}{\frac{r_{p-1}}{\mu_{p-2} \cdots \mu_{0 j \neq p-1}} \prod\limits_j K_j+\cdots} \rightarrow\\ &\leftarrow \frac{1}{+\mu_{p-1}\left(r_{p-2} \prod\limits_{j \neq p-2} K_j+\cdots+r_0 \prod\limits_{j \neq 0} K_j\right)} \end{aligned} $ |
By equation
$ \frac{r_{p-1}}{\mu_{p-2} \cdots \mu_0}+\mu_{p-1} r_{p-2}+\cdots+\mu_{p-1} r_0=1 $ |
and Lemma 1 again, the following expression is obtained:
$ \begin{aligned} \tilde{x}_{p-1}<& \frac{r_{p-1}}{\mu_{p-2} \cdots \mu_0} K_{p-1}+\mu_{p-1} r_{p-2} K_{p-2}+\cdots+\\ & \mu_{p-1} r_0 K_0 \end{aligned} $ | (13) |
Adding up inequalities from (10) to (13) yields
$ \begin{aligned} &\tilde{x}_0+\cdots+\tilde{x}_{p-1}<\left(1+\frac{1}{\mu_0}+\cdots+\frac{1}{\mu_{p-2} \cdots \mu_0}\right) r_{p-1} K_{p-1}+ \\ &\quad\left(1+\frac{1}{\mu_0}+\cdots+\frac{1}{\mu_{p-3} \cdots \mu_0}+\mu_{p-1}\right) r_{p-2} K_{p-2}+\cdots+ \\ &\quad\left(1+\frac{1}{\mu_0}+\cdots+\frac{1}{\mu_{i-1} \cdots \mu_0}+\mu_{p-1} \cdots \mu_{i+1}+\cdots+\right. \\ &\left.\quad \mu_{p-1}\right) r_i K_i+\cdots+\left(1+\mu_{p-1} \cdots \mu_1+\mu_{p-1} \cdots \mu_2+\right. \\ &\left.\quad \cdots+\mu_{p-1}\right) r_0 K_0=K_{p-1}+K_{p-2}+\cdots+K_0+ \\ &\sum\limits_{i=0}^{p-1} s_i K_i \end{aligned} $ |
That is
$ \tilde{x}_0+\cdots+\tilde{x}_{p-1}<K_{p-1}+K_{p-2}+\cdots+K_0+\sum\limits_{i=0}^{p-1} s_i K_i $ | (14) |
where
$ \begin{aligned} &s_i= \\ &\left\{\begin{array}{l} \left(1+\mu_{p-1} \cdots \mu_1+\mu_{p-1} \cdots \mu_2+\cdots+\mu_{p-1}\right) r_0-1, i=0 \\ \left(1+\frac{1}{\mu_0}+\cdots+\frac{1}{\mu_{p-2} \cdots \mu_0}\right) r_{p-1}-1, i=p-1 \\ \left(1+\cdots+\frac{1}{\mu_{i-1} \cdots \mu_0}+\cdots+\mu_{p-1}\right) r_i-1, i=1, 2, \cdots, p-2 \end{array}\right. \end{aligned} $ | (15) |
Or
$ \begin{aligned} s_0=& \frac{\mu_0-1}{\prod\limits_{j=0}^{p-1} \mu_j-1} \cdot\left(\mu_{p-1} \cdots \mu_2+\cdots+\mu_{p-1}\right)+\\ & \frac{\mu_0-\prod\limits_{j \neq 0} \mu_j}{\prod\limits_{j=0}^{p-1} \mu_j-1} \end{aligned} $ | (16a) |
$ \begin{aligned} s_{p-1}=& \frac{\mu_p-1}{\prod\limits_{j=0}^{p-1} \mu_j-1} \cdot\left(\mu_{p-2} \cdots \mu_1+\cdots+\mu_{p-2}\right)+\\ & \frac{\mu_{p-1}-\prod\limits_{j \neq p-1} \mu_j}{\prod\limits_{j=0}^{p-1} \mu_j-1} \end{aligned} $ | (16b) |
$ \begin{aligned} s_i=& \frac{\mu_i-1}{\prod\limits_{j=0}^{p-1} \mu_j-1} \cdot\left(\mu_{i-1} \cdots \mu_0 \cdot \mu_{p-1} \cdots \mu_{i+2}+\cdots+\right.\\ &\left.\mu_{i-1} \cdots \mu_0 \cdot \mu_{p-1}\right)+\frac{\mu_i-1}{\prod\limits_{j=0}^{p-1} \mu_j-1} \cdot \end{aligned} \\ \;\;\; \begin{aligned} &\left(\mu_{i-1} \cdots \mu_0+\cdots+\mu_{i-1}\right)+ \\ &\frac{\mu_i-\prod\limits_{j \neq i} \mu_j}{\prod\limits_{j=0}^{p-1} \mu_j-1} \end{aligned} $ | (16c) |
in which i=1, 2, …, p-2.
Define
Theorem 2 Suppose μn>1, Kn>0, and
Theorem 2 provides a sufficient condition on sn and Kn to guarantee the attenuation of periodic solution, i.e.,
Now, si is closely studied. According to Eq. (15) and
$ \begin{aligned} &\sum\limits_{i=0}^{p-1} s_i=-p+\left(1+\frac{1}{\mu_0}+\cdots+\frac{1}{\mu_{p-2} \cdots \mu_0}\right) r_{p-1}+\\ &\left(1+\frac{1}{\mu_0}+\cdots+\frac{1}{\mu_{p-3} \cdots \mu_0}+\mu_{p-1}\right) r_{p-2}+\cdots+\\ &\left(1+\mu_{p-1} \cdots \mu_1+\mu_{p-1} \cdots \mu_2+\cdots+\mu_{p-1}\right) r_0=\\ &-p+\sum\limits_{i=0}^{p-1} r_i+\frac{r_{p-1}+\cdots+r_1+r_0 \prod\limits_{i=0}^{p-1} \mu_i}{\mu_0}+\\ &\frac{r_{p-1}+\cdots+r_2+\left(r_1+r_0\right) \prod\limits_{i=0}^{p-1} \mu_i}{\mu_1 \mu_0}+\cdots+\\ &\frac{r_{p-1}+\left(r_{p-2}+\cdots+r_0\right) \prod\limits_{i=0}^{p-1} \mu_i}{\mu_{p-2} \cdots \mu_1 \mu_0}=0 \end{aligned} $ |
or
$ s_0+s_1+\cdots+s_{p-1}=0 $ | (17) |
The following lemma shows how the signs of si change with μ0, μ1, …, μp-1.
Lemma 2 Let μn>1, Kn>0 be both p-periodic, and si be defined by Eq.(15). If p-periodic sequence {μn} satisfies μ0≤μ1≤…≤μp-1, then the following statements are true.
(S1) s0 < 0, sp-1>0;
(S2) If si-1≥0, then si>0 for i=2, …, p-1.
Proof (S1) can be proved easily. By Eq. (15), there is
$ s_0=\frac{\sum\limits_{j=2}^{p-1} \mu_{p-1} \mu_{p-2} \cdots \mu_j\left(\mu_0-\mu_{j-1}\right)+\left(\mu_0-\mu_{p-1}\right)}{\prod\limits_{j=0}^{p-1} \mu_j-1} \\ s_{p-1}=\frac{\sum\limits_{j=1}^{p-2} \mu_{p-2} \mu_{p-3} \cdots \mu_j\left(\mu_{p-1}-\mu_{j-1}\right)+}{\prod\limits_{j=0}^{p-1} \mu_j-1} \rightarrow \\ \longleftarrow \frac{\left(\mu_{p-1}-\mu_{p-2}\right)}{1} $ |
Obviously, s0 < 0 and sp-1>0 because of μ0=μmin and μp-1=μmax.
(S2) is proved next. With Eq. (15) again, si is rewritten as follows:
$ \begin{aligned} s_i=& \frac{1}{\prod\limits_{j=0}^{p-1} \mu_j-1} \cdot\left[\mu_{i-1} \mu_{i-2} \cdots \mu_0 \mu_{p-1} \cdots \mu_{i+2}\left(\mu_i-\mu_{i+1}\right)+\right.\\ & \cdots+\mu_{i-1} \mu_{i-2} \cdots \mu_0 \mu_{p-1}\left(\mu_i-\mu_{p-2}\right)+\mu_{i-1} \mu_{i-2} \cdots \\ & \mu_0\left(\mu_i-\mu_{p-1}\right)+\mu_{i-1} \mu_{i-2} \cdots \mu_1\left(\mu_i-\mu_0\right)+\mu_{i-1} \mu_{i-2} \cdots \\ &\left.\mu_2\left(\mu_i-\mu_1\right)+\cdots+\mu_{i-1}\left(\mu_i-\mu_{i-2}\right)+\left(\mu_i-\mu_{i-1}\right)\right] \end{aligned} $ | (18) |
Suppose si≤0 and si-1≥0 for some i∈ 2, 3, …, p-1 (p>3). Then the following two inequalities are obtained:
$ \left\{\begin{array}{l} \mu_{p-1} \leqslant \frac{A}{\mu_{i-2} \mu_{i-3} \cdots \mu_0 B} \\ \mu_{p-1} \geqslant \frac{C}{\mu_{i-2} \mu_{i-3} \cdots \mu_0 D} \end{array}\right. $ | (19) |
where
$ \begin{aligned} A=& \mu_{i-2} \mu_{i-3} \cdots \mu_0 \mu_{i-1}+\sum\limits_{j=1}^{i-2} \mu_{i-2} \mu_{i-3} \cdots \\ & \mu_j\left(\mu_{i-1}-\mu_{j-1}\right)+\left(\mu_{i-1}-\mu_{i-2}\right) \end{aligned} $ | (20a) |
$ \begin{aligned} B=& \sum\limits_{j=i+1}^{p-2} \mu_{p-2} \mu_{p-3} \cdots \mu_j\left(\mu_{j-1}-\mu_{i-1}\right)+\\ &\left(\mu_{p-2}-\mu_{i-1}\right)+1 \end{aligned} $ | (20b) |
$ \begin{aligned} C=& \mu_{i-2} \mu_{i-3} \cdots \mu_0 \mu_i+\sum\limits_{j=1}^{i-2} \mu_{i-2} \mu_{i-3} \cdots \\ & \mu_j\left(\mu_i-\mu_{j-1}\right)+\left(\mu_i-\mu_{i-2}\right)+\frac{\mu_i-\mu_{i-1}}{\mu_{i-1}} \end{aligned} $ | (20c) |
$ D=\sum\limits_{j=i+2}^{p-2} \mu_{p-2} \mu_{p-3} \cdots \mu_j\left(\mu_{j-1}-\mu_i\right)+\left(\mu_{p-2}-\mu_i\right)+1 $ | (20d) |
The following inequality is obtained by Eq.(19):
$ \frac{C}{D} \leqslant \frac{A}{B} $ | (21) |
On the other hand, there is C>A>0 and B>D> 0 by assumptions on μi. This contradiction means that si>0 whenever si-1≥0. So (S2) of lemma holds.
Now the main result of this paper is given.
Theorem 3 Let μn>1, Kn>0 and
Proof By Lemma 2, it is known that s0 < 0, sp-1>0 and si≥0 for some integer N(i=N, N+1, …, p-1). That is
$ \begin{gathered} s_0<0, s_1<0, \cdots, s_N \geqslant 0 \\ s_{N+1}>0, \cdots, s_{p-1}>0 \end{gathered} $ |
By Eq. (17), there is
$ \begin{aligned} \overrightarrow{\boldsymbol{s}} \cdot \overrightarrow{\boldsymbol{K}}=& s_0 K_0+s_1 K_1+\cdots+s_{p-2} K_{p-2}+\left(-s_0-s_1-\cdots\right.\\ &\left.-s_{p-2}\right) K_{p-1}=s_0\left(K_0-K_{p-1}\right)+\\ & s_1\left(K_1-K_{p-1}\right)+\cdots+s_{p-2}\left(K_{p-2}-K_{p-1}\right)<\\ & s_0\left(K_N-K_{p-1}\right)+s_1\left(K_N-K_{p-1}\right)+\cdots+\\ & s_{p-2}\left(K_N-K_{p-1}\right)=-s_{p-1}\left(K_N-K_{p-1}\right) \leqslant 0 \end{aligned} $ |
The conclusion is proved by using Theorem 2.
3 ConclusionsIn this paper, we investigated the properties of periodic solutions of non-autonomous Beverton-Holt equation with μn and Kn both varying periodically.
[1] |
Clark M E, Gross L J. Periodic solutions to nonautonomous difference equations. Mathematical Biosciences, 1990, 102(1): 105-119. DOI:10.1016/0025-5564(90)90057-6 (0) |
[2] |
Elaydi S. An Introduction to Difference Equations, Third Edition. New York: Springer-Verlag, 2004.
(0) |
[3] |
Zhou Z, Zou X F. Stable periodic solutions in a discrete periodic logistic equation, applications to population models. Applied Mathematics Letters, 2003, 16(2): 165-171. DOI:10.1016/S0893-9659(03)80027-7 (0) |
[4] |
Cushing J M, Henson S M. Global dynamics of some periodically forced, monotone difference equations. Journal of Difference Equations and Applications, 2001, 7(6): 859-872. DOI:10.1080/10236190108808308 (0) |
[5] |
Cushing J M, Henson S M. A periodically forced Beverton-Holt equation. Journal of Difference Equations and Applications, 2002, 8(12): 1119-1120. DOI:10.1080/1023619031000081159 (0) |
[6] |
Elaydi S, Sacker R J. Periodic difference equations, population biology, and the Cushing-Henson conjectures. Mathematical Biosciences, 2006, 201(11-12): 195-207. DOI:10.1016/j.mbs.2005.12.021 (0) |
[7] |
Elaydi S, Sacker R J. Global stability of periodic orbits of nonautonomous difference equations and population biology. Journal of Differential Equations, 2005, 208(1): 258-273. DOI:10.1016/j.jde.2003.10.024 (0) |
[8] |
Elaydi S, Sacker R J. Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjectures. Proceedings of the 8th International Conference on Difference Equations. Virginia Beach, VA: Chapman and Hall/CRC Press, 2003.
(0) |
[9] |
Kocic V L. A note on the nonautonomous delay Beverton-Holt model. Journal of Biological Dynamics, 2010, 4(2): 131-139. DOI:10.1080/17513750902803588 (0) |
[10] |
Kon R. A note on attenuant cycles of population models with periodic carrying capacity. Journal of Difference Equations and Applications, 2004, 4(8): 791-793. DOI:10.1080/10236190410001703949 (0) |
[11] |
Haskell C, Yang Y, Sacker R J. Resonance and attenuation in the n-periodic Beverton-Holt equation. Journal of Difference Equations and Applications, 2013, 19(7): 1174-1191. DOI:10.1080/10236198.2012.726988 (0) |
[12] |
Elaydi S, Sacker R J. Skew-Product Dynamical Systems: Applications to Difference Equations. https://digitalcommons.trinity.edu/cgi/viewcontent.cgi?article=1031&context=math_faculty, 2021-09-06.
(0) |
[13] |
Garren G R J, Gaut K, Grogan F, et al. Difference equations with the Allee effect and the periodic Sigmoid Beverton-Holt equation revisited. Journal of Biological Dynamics, 2012, 6: 1019-1033. DOI:10.1080/17513758.2012.719039 (0) |
[14] |
Elaydi S, Sacker R J. Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures. Journal of Difference Equations and Applications, 2005, 11(4-5): 337-346. DOI:10.1080/10236190412331335418 (0) |