Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Yingchao Hao,Cuiping Li.Research on the Properties of Periodic Solutions ofBeverton-Holt Equation[J].Journal of Harbin Institute Of Technology(New Series),2022,29(4):26-31.DOI:10.11916/j.issn.1005-9113.21030.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 872times   downloaded 208times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Research on the Properties of Periodic Solutions ofBeverton-Holt Equation
Author NameAffiliation
Yingchao Hao School of Mathematical Sciences, Beihang University, Beijing 100083, China 
Cuiping Li School of Mathematical Sciences, Beihang University, Beijing 100083, China 
Abstract:
Fractional linear maps have played a key role in mathematical biology, population dynamics, and other research areas. In this paper, a special kind of Ricatti map is studied in detail in order to determine the asymptotical behaviors of fixed points and periodic solutions. Making use of composition operation of maps and the methods of dynamical systems and qualitative theory, fixed points or periodic orbits are expressed precisely, average value of periodic solution is estimated concretely, and several different bounds are obtained for periodic solutions of the Beverton-Holt map when both intrinsic growth rate and carrying capacity change periodically. In addition, some sufficient conditions are given about the attenuation of periodic solution of the non-autonomous Beverton-Holt equation. Compared with present works in literature, our results about bounds of periodic solutions are more precise, and our proofs about the attenuation of periodic solution are more concise.
Key words:  Beverton-Holt equation  Cushing-Henson conjecture  attenuation  p-cycle
DOI:10.11916/j.issn.1005-9113.21030
Clc Number:O175.7
Fund:
Descriptions in Chinese:
  

Beverton-Holt方程的周期解性质研究

郝颖超, 李翠萍

(北京航空航天大学 数学科学学院,北京 100083)

中文说明:

本文对一类特殊的Ricatti映射进行了详细研究.针对内禀增长率与环境容纳量均周期改变的Beverton-Holt映射的周期解给出了不同的界的估计,并给出了非自治Beverton-Holt方程周期解发生衰减的条件及新的证明.

关键词:Beverton-Holt方程,Cushing-Henson猜想,衰减,p-环

LINKS