In this paper, the initial value problem of one-dimensional compressible non-isentropic Navier-Stokes system for ideal gas is investigated, which reads in the Lagrangian coordinate as[1]
$ \left\{\begin{array}{l} v_t-u_x=0, \\ u_t+p_x=\left(\mu \frac{u_x}{v}\right)_x, (t, x) \in \mathbb{R}^{+} \times \mathbb{R} \\ \left(e+\frac{u^2}{2}\right)_t+(p u)_x=\left(\kappa \frac{\theta_x}{v}\right)_x+\left(\mu \frac{u u_x}{v}\right)_x \end{array}\right. $ | (1) |
The unknown function v(x, t)>0 represents the specific volume, the unknown function u(x, t) is the velocity, the unknown function p(x, t) represents the pressure, the unknown function e(x, t) stands for the internal energy, and the unknown function θ(x, t)>0 is the absolute temperature. The positive coefficient μ stands for the heat-conductivity coefficient. The coefficient κ>0 stands for the viscosity coefficient. For ideal gas, there is[2]
$ \begin{aligned} p=R \frac{\theta}{v} &=B v^{-\gamma} \exp \left\{\frac{\gamma-1}{R} S\right\} \\ e &=\frac{R}{\gamma-1} \theta+C \end{aligned} $ |
where B, C are two positive constants, R>0, S, γ>1 are the gas constant, specific entropy, and the adiabatic exponent, respectively.
The initial value problem was investigated for expression (1) equipped with the initial data
$ (v, u, \theta)(0, x)=\left(v_0, u_0, \theta_0\right)(x), x \in \mathbb{R} $ | (2) |
and the far field condition:
$ (v, u, \theta)(t, x) \rightarrow\left\{\begin{array}{l} \left(\bar{v}_r, \bar{u}_l, \bar{\theta}_l\right), x \rightarrow-\infty \\ \left(\bar{v}_r, \bar{u}_r, \bar{\theta}_r\right), x \rightarrow \infty \end{array}\right. $ |
where
Consider the case where entropy S is a constant. So the pressure becomes p=p(v)=a(v)-γ for constant a. Thus expression (1) become
$ \left\{\begin{array}{l} v_t-u_x=0 \\ u_t+p_x=\left(\mu \frac{u_x}{v}\right)_x \end{array}\right. $ | (3) |
and the corresponding initial condition is
$ (v, u)(t, x) \rightarrow\left\{\begin{array}{l} \left(\bar{v}_l, \bar{u}_l\right), x \rightarrow-\infty \\ \left(\bar{v}_r, \bar{u}_r\right), x \rightarrow \infty \end{array}\right. $ | (4) |
When μ is a constant, Matsumura and Nishihara[13] first studied the stability of viscous shock to Cauchy problem as shown in expressions (3) and (4), provided that
For the non-isentropic case, as shown in expressions (1) and (2), the situation becomes more complex than the isentropic case as shown in expressions (3) and (4). If
When γ∈(1, 1.5) (including the air) and
The rest of the article is arranged as follows. In Section 1, some properties of the viscous shock wave are proposed and the main result is described. In Section 2, the original problem is reformulated by the anti-derivative method. In Section 3, the a prior estimation is obtained by a weighted energy estimate.
1 Viscous Shock Wave and Main ResultSet ζ=x-σt, where σ is a constant indicating the speed of the shock, which will be determined later. The travel wave solution (vs, us, θs)(ζ) of expression (1) is considered to be
$ \left\{\begin{array}{l} -\sigma\left(v^s\right)^{\prime}-\left(u^s\right)^{\prime}=0 \\ -\sigma\left(u^s\right)^{\prime}+\left(p^s\right)^{\prime}=\left(\frac{\left(u^s\right)^{\prime}}{v^s}\right)^{\prime} \\ -\sigma\left(e^s+\frac{\left(u^s\right)^2}{2}\right)^{\prime}+\left(u^s\right)^{\prime}=\left(\frac{\left(\theta^s\right)^{\prime}}{v^s}\right)^{\prime}+\left(\frac{u^s\left(u^s\right)^{\prime}}{v^s}\right)^{\prime} \end{array}\right. $ | (5) |
And
$ \left(v^s, u^s, \theta^s\right)(\zeta) \longrightarrow\left\{\begin{array}{l} \left(\bar{v}_l, \bar{u}_l, \bar{\theta}_l\right), \zeta \rightarrow-\infty \\ \left(\bar{v}_r, \bar{u}_r, \bar{\theta}_r\right), \zeta \rightarrow \infty \end{array}\right. $ | (6) |
where
$ \begin{gathered} \prime=\frac{\mathrm{d}}{\mathrm{d} \zeta}, p^s=\frac{\theta^s}{v^s} \\ e^s=\frac{\theta^s}{\gamma-1}+\text { constant } \end{gathered} $ |
Integrating expression (5) concerning ζ with (ζ, ∞) or (ζ, -∞), there is
$ \left(\begin{array}{l} -\sigma v^s-u^s=-\sigma \bar{v}_{r, l}-\bar{u}_{r, l} \\ -\sigma u^s+p^s-\frac{\left(u^s\right)^{\prime}}{v^s}=-\sigma \bar{u}_{r, l}+\bar{p}_{r, l} \\ -\sigma\left(\frac{\theta^s}{\gamma-1}+\frac{\left(u^s\right)^2}{2}\right)+p^s u^s-\frac{\left(\theta^s\right)^{\prime}}{v^s}-\frac{u^s\left(u^s\right)^{\prime}}{v^s}= \\ \quad-\sigma\left(\frac{\bar{\theta}_{r, l}}{\gamma-1}+\frac{\bar{u}_{r, l}^2}{2}\right)+\bar{p}_{r, l} \bar{u}_{r, l} \end{array}\right. $ | (7) |
where
$ \left\{\begin{array}{l} -\sigma\left(\bar{v}_r-\bar{v}_l\right)-\left(\bar{u}_r-\bar{u}_l\right)=0 \\ -\sigma\left(\bar{u}_r-\bar{u}_l\right)+\left(\frac{\bar{\theta}_r}{\bar{v}_r}-\frac{\bar{\theta}_l}{\bar{v}_l}\right)=0 \\ -\sigma\left\{\left(\frac{\bar{\theta}_r}{\gamma-1}+\frac{\bar{u}_r^2}{2}\right)-\left(\frac{\bar{\theta}_l}{\gamma-1}+\frac{\bar{u}_l^2}{2}\right)\right\}+ \\ \;\;\;\;\;\; \left(\bar{p}_r \bar{u}_r-\bar{p}_l \bar{u}_l\right)=0 \end{array}\right. $ | (8) |
For simplicity, the focus of this paper is on the case σ>0 (third shock). Furthermore, it is assumed that the shock speed σ satisfies the following Lax's shock condition:
$ \frac{\sqrt{\gamma \bar{\theta}_r}}{\bar{v}_r} <\sigma<\frac{\sqrt{\gamma \bar{\theta}_l}}{\bar{v}_l} $ | (9) |
Lemma 1.1[1, 18] Suppose the constants
$ \left\{\begin{array}{l} \left|\left(v^s\right)^{\prime \prime}\right|, \left|\left(\theta^s\right)^{\prime \prime}\right| \leqslant C\left|\bar{v}_r-\bar{v}_l\right| \\ \left|\frac{\left(\theta^s\right)^{\prime}}{\left(v^s\right)^{\prime}}\right| \leqslant C(\gamma-1) \\ \left|\left(v^s\right)^{\prime}\right| \leqslant C\left|\bar{v}_r-\bar{v}_l\right|^2 \\ \sigma\left(v^s\right)^{\prime}=-\left(u^s\right)^{\prime}>0, \sigma\left(\theta^s\right)^{\prime} <0 \end{array}\right. $ | (10) |
Next, the main result of this study is to be described. Suppose that
$ \left(v_0-v^s, u_0-u^s, \theta_0-\theta^s\right) \in H^1 $ | (11) |
and for ∀x∈R, the integrals Ψ0(x), Φ0(x), Z0(x) exist, as follows,
$ \begin{array}{l} {\mathit{\Psi }_0}(x) = \int_{ - \infty }^x {\left( {{v_0} - {v^s}} \right)} (y){\rm{d}}y\\ {\mathit{\Phi }_0}(x) = \int_{ - \infty }^x {\left( {{u_0} - {u^s}} \right)} (y){\rm{d}}y\\ {{\bar Z}_0}(x) = \int_{ - \infty }^x {\left( {\frac{{{\theta _0}}}{{\gamma - 1}} - \frac{{{\theta ^s}}}{{\gamma - 1}} + \frac{{u_0^2}}{2} - \frac{{{{\left( {{u^s}} \right)}^2}}}{2}} \right)} (y){\rm{d}}y \end{array} $ |
Furthermore, Define
$ \left( {{\mathit{\Psi }_0}, {\mathit{\Phi }_0}, {Z_0}} \right) \in {L^2} $ | (12) |
According to Eq.(6) and Lemma 1.1, it is known that |us| is bounded. Combining with (Ψ0, Z0)∈L2, and by the Minkowski inequality, Z0∈L2 is obtained. Thus expression(12) becomes
$ \left( {{\mathit{\Psi }_0}, {\mathit{\Phi }_0}, {{\bar Z}_0}} \right)( + \infty ) = 0 $ |
So
$ \left\{\begin{array}{l} \int_{-\infty}^{+\infty}\left(v_0-v^s\right)(x) \mathrm{d} x=0 \\ \int_{-\infty}^{+\infty}\left(u_0-u^s\right)(x) \mathrm{d} x=0 \\ \int_{-\infty}^{+\infty}\left(\frac{\theta_0}{\gamma-1}-\frac{\theta^s}{\gamma-1}+\frac{u_0^2}{2}-\frac{\left(u^s\right)^2}{2}\right)(x) \mathrm{d} x=0 \end{array}\right. $ |
Let v- < v+, u+and θ- < θ+ be any fixed positive constants. Then it is assumed that the six constants
$ \begin{gathered} \bar{v}_l, \bar{v}_r \in\left[v_{-}, v_{+}\right], \left|\bar{u}_{r, } \bar{u}_l\right| \in\left[0, u_{+}\right], \\ \bar{\theta}_{r, } \bar{\theta}_l \in\left[\theta_{-}, \theta_{+}\right] \end{gathered} $ | (13) |
Define
$ \begin{aligned} N(0):=&\left\|{\mathit{\Psi}}_0, {\mathit{\Phi}}_0, Z_0(\gamma-1)^{-\frac{1}{2}}\right\|+\\ &\left\|v_0-v^s, u_0-u^s, \left(\theta_0-\theta^s\right)(\gamma-1)^{-\frac{1}{2}}\right\|_1 \end{aligned} $ |
Then the result can be stated as:
Theorem 1.1 Assume (
$ \left\{\begin{array}{l} 2 \gamma p_v\left(\bar{v}_r\right)>p_v\left(\bar{v}_l\right) \\ (\gamma-1)^3\left|\bar{v}_r-\bar{v}_l\right|^2 <\varepsilon_0 \end{array}\right. $ | (14) |
The Cauchy problem as shown expressions (1) and (2) has a unique global solution (v, u, θ)(x, t) such that
$ \left\{ {\begin{array}{*{20}{l}} {v - {v^s} \in {C^0}\left( {0, \infty ;{H^1}} \right) \cap {L^2}\left( {0, \infty ;{H^1}} \right)}\\ {\left( {u - {u^s}, \theta - {\theta ^s}} \right) \in {C^0}\left( {0, \infty ;{H^1}} \right) \cap {L^2}\left( {0, \infty ;{H^2}} \right)}\\ {\mathop {\inf }\limits_{(x, t) \in \mathbb{R} \times \mathbb{R}^{+}} \{ v(t, x), \theta (t, x)\} > 0} \end{array}} \right. $ |
and the long time behavior
$ \begin{aligned} &\sup\limits_{x \in \mathbb{R}}\left|(v, u, \theta)(t, x)-\left(v^s, u^s, \theta^s\right)(x-\sigma t)\right| \rightarrow 0 \\ &\text { as } t \rightarrow \infty. \end{aligned} $ |
Remark 1.1 When
The perturbation is defined as
$ \begin{gathered} (\chi, \phi, z)(t, x)=(v, u, \theta)(t, x)-\left(v^s, u^s, \right. \\ \left.\theta^s\right)(\zeta), \zeta=x-\sigma t \end{gathered} $ |
With the aid of expressions (1) and (5), it is known the perturbation (χ, ϕ, z) satisfies
$ \left\{ {\begin{array}{*{20}{l}} {{\chi _t} - {\phi _x} = 0}\\ \begin{array}{l} {\phi _t} - \frac{\xi }{{{v^s}}}{\chi _x} + \frac{{{z_x}}}{{{v^s}}} - {\left( {\frac{{{\phi _x}}}{{{v^s}}}} \right)_x} - {\left( {\frac{\xi }{{{v^s}}}} \right)_x}\chi + \\ \;\;\;\;{\left( {\frac{1}{{{v^s}}}} \right)_x}z = {f_1} \end{array}\\ {\frac{{{z_t}}}{{\gamma - 1}} + \xi {\phi _x} - {{\left( {\frac{{{z_x}}}{{{v^s}}}} \right)}_x} + {{\left( {\frac{{{{\left( {{\theta ^s}} \right)}^{\prime} }\chi }}{{{{\left( {{v^s}} \right)}^2}}}} \right)}_x} - }\\ {\frac{{{{\left( {{u^s}} \right)}^{\prime} }}}{{{v^s}}}\left( {\xi - z + {\phi _x}} \right) = {f_2}} \end{array}} \right. $ | (15) |
where
$ \begin{aligned} f_1=&{\left( {\frac{{p - {p^s}}}{{{v^s}}}\chi - \frac{{{\phi _x}\chi }}{{v{v^s}}} + \frac{{{{\left( {{u^s}} \right)}^{\prime} }}}{{v{{\left( {{v^s}} \right)}^2}}}{\chi ^2}} \right)_x}=\\ & O(1)\left(|\chi, z|^2+|\chi, z|\left|\chi_x, \phi_x, z_x\right|+\right.\\ &\left.\left|\chi_x \phi_x\right|+|\chi|\left|\phi_{x x}\right|\right) \end{aligned} $ | (16) |
and
$ \begin{aligned} f_2=& \frac{1}{v}\left(\xi-z+\phi_x\right)\left(\phi_x-\frac{\left(u^s\right)^{\prime} \chi}{v^s}\right)+\\ & {\left[\frac{\chi}{v V}\left(z_x-\frac{\left(\theta^s\right)^{\prime} \chi}{v^s}\right)\right]_x=O(1)\left(|\chi, z|^2+\right.} \\ &|\chi, z|\left|\chi_x, \phi_x, z_x\right|+\left|\chi_x, \phi_x\right|\left|\phi_x, z_x\right|+\\ &\left.|\chi|\left|z_{x x}\right|\right) \end{aligned} $ | (17) |
with
$ \begin{gathered} \left(\chi_0, \phi_0, z_0\right)(x):=(\chi, \phi, z)(0, x)= \\ \left(v_0-v^s, u_0-u^s, \theta_0-\theta^s\right)(x) \end{gathered} $ |
Motivated by Ref. [1],
$ (\mathit{\Psi }, \mathit{\Phi }, \bar{Z})(t, x):=\int_{-\infty}^x(\chi, \phi, \bar{z})(t, y) \mathrm{d} y $ |
By introducing Z∶ =(γ-1)(Z -usΦ), ξ=ps-
$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\Psi }_t} - {\mathit{\Phi }_x} = 0}\\ {{\mathit{\Phi }_t} - \frac{\xi }{{{v^s}}}{\mathit{\Psi }_x} + \frac{{{Z_x}}}{{{v^s}}} + \frac{{\gamma - 1}}{{{v^s}}}{{\left( {{u^s}} \right)}^{\prime} }\mathit{\Phi } = \frac{{{\mathit{\Phi }_{xx}}}}{{{v^s}}} + {F_1}}\\ {\frac{1}{{\gamma - 1}}{Z_t} + \xi {\mathit{\Phi }_x} + u_t^s\mathit{\Phi } - \frac{{\gamma - 1}}{{{v^s}}}{{\left( {{{\left( {{u^s}} \right)}^{\prime} }\mathit{\Phi }} \right)}_x} + }\\ {\;\;\;\;\;\;\;\;\;\frac{{{{\left( {{\theta ^s}} \right)}^{\prime} }}}{{{{\left( {{v^s}} \right)}^2}}}{\mathit{\Psi }_x} = \frac{{{Z_{xx}}}}{{{v^s}}} + {F_2}} \end{array}} \right. $ | (18) |
where
$ \begin{array}{l} {F_1} = \frac{{p - {p^s}}}{{{v^s}}}{\mathit{\Psi }_x} + \frac{{\gamma - 1}}{{2{v^s}}}\mathit{\Phi }_x^2 - \frac{{{\mathit{\Phi }_{xx}}{\mathit{\Psi }_x}}}{{v{v^s}}} + \\ \;\;\;\frac{{{{\left( {{u^s}} \right)}^{\prime} }\mathit{\Psi }_x^2}}{{v{{\left( {{v^s}} \right)}^2}}} = O(1){\left| {\left( {\chi , \phi , z, {\phi _x}} \right)} \right|^2} \end{array} $ | (19) |
and
$ \begin{aligned} F_2 &=-\left(p-p^s\right) \mathit{\Phi }_x-\frac{\gamma-1}{v^s} \mathit{\Phi }_x \mathit{\Phi }_{x x}-\frac{\mathit{\Psi }_x z_x}{v v^s}+\\ & \frac{\left(\theta^s\right)^{\prime}}{v\left(v^s\right)^2} \mathit{\Psi }_x^2+\left(\frac{u_x}{v}-\frac{\left(u^s\right)^{\prime}}{v^s}\right) \mathit{\Phi }_x=\\ & O(1)\left|\left(\chi, \phi z, \phi_x z_x\right)\right|^2 \end{aligned} $ | (20) |
with
$ \left(\mathit{\Psi }_0, \mathit{\Phi }_0, Z_0\right)(x):=(\mathit{\Psi }, \mathit{\Phi }, Z)(0, x) $ | (21) |
The solution space of the Cauchy problem as shown in expressions (18) and (21) is defined as
$ \begin{gathered} \mathit{\Psi }_x \in L^2\left(0, T ; H^1\right) \\ \left(\mathit{\Phi }_x, Z_x\right) \in L^2\left(0, T ; H^2\right) \\ N(t):=\sup\limits_{0 <\tau \leqslant t}\left\{\left\|\mathit{\Psi }, \mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}(\tau)\right\|+\right. \\ \left.\left.\left\|\chi, \phi, z(\gamma-1)^{-\frac{1}{2}}(\tau)\right\|_1\right\}<\delta\right\} \end{gathered} $ |
Moreover, the perturbation
Proposition 2.1 (a priori estimate) It is assumed that
$ \begin{aligned} &\left\|\left(\mathit{\Psi }, \mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}\right)\right\|^2(t)+ \\ &\quad\left\|\left(\chi, \phi, z(\gamma-1)^{-\frac{1}{2}}\right)\right\|_1^2(t)+ \\ &\quad \int_0^t\left(\left\|\sqrt{\left(v^s\right)^{\prime}}\left(\mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}\right)\right\|^2+\|\chi\|_1^2+\right. \\ &\left.\|(\phi, z)\|_2^2\right)(\tau) \mathrm{d} \tau \leqslant C_1\left(\|\left(\mathit{\Psi }_0, \mathit{\Phi }_0, Z_0(\gamma-\right.\right. \\ &\left.\left.1)^{-\frac{1}{2}}\right)\left\|^2+\right\|\left(\chi_0, \phi_0, z_0(\gamma-1)^{-\frac{1}{2}}\right) \|_1^2\right), \\ &\forall t \in[0, T] \end{aligned} $ | (22) |
The local solution (Ψ, Φ, Z) can be extended to T=+∞, provided that Proposition 2.1 is obtained.
Theorem 2.1 It is assumed that the initial data
$ \begin{gathered} \sup\limits_{t \geqslant 0}\left(\left\|\left(\mathit{\Psi }, \mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}\right)\right\|^2+\right. \\ \left.\left\|\left(\chi, \phi, z(\gamma-1)^{-\frac{1}{2}}\right)\right\|_1^2\right)(t)+ \\ \int_0^{\infty}\left(\| \sqrt{\left(v^s\right)^{\prime}}\left(\mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}\right)^2+\right. \\ \left.\|\chi\|_1^2+\|(\phi, z)\|_2^2\right)(\tau) \mathrm{d} \tau \leqslant \\ C_0\left(\left\|\left(\mathit{\Psi }_0, \mathit{\Phi }_0, Z_0(\gamma-1)^{-\frac{1}{2}}\right)\right\|^2+\right. \\ \left.\left\|\left(\chi_0, \phi_0, z_0(\gamma-1)^{-\frac{1}{2}}\right)\right\|_1^2\right) \end{gathered} $ |
With Theorem 2.1, Theorem 1.1 can be proved directly. So our primary mission in the next section is to prove Proposition 2.1.
3 Proof of Proposition 2.1In this section, the proof of priori estimation is discussed emphatically. For T>0, it is supposed that expressions (18)-(20) have a solution (Ψ, Φ, Z)∈
$ \begin{aligned} \|z\|_1=&(\gamma-1)^{\frac{1}{2}}\left\|z(\gamma-1)^{-\frac{1}{2}}\right\|_1 <\\ &\left\|z(\gamma-1)^{-\frac{1}{2}}\right\|_1 \leqslant \delta \end{aligned} $ | (23) |
Based on expression (23), there is
$ \sup \limits_{t \in[0, T]}\|(\chi, z)\|_1 \leqslant \delta $ |
Note that
$ \left\{\begin{array}{l} v=\left(v^s+\chi\right) \geqslant v_{-}-\|\chi\|_1 \geqslant \frac{1}{2} v_{-}>0 \\ \theta=\left(\theta^s+z\right) \geqslant \theta_{-}-\|z\|_1 \geqslant \frac{1}{2} \theta_{-}>0 \end{array}\right. $ | (24) |
Expression (24) ensures v and θ have positive lower bounds on [0, T].
Lemma 3.1 Under the same assumptions of Proposition 2.1, there are constants C and ε independent of T. If
$ (\gamma-1)^3\left|\bar{v}_r-\bar{v}_l\right|^2 \leqslant \varepsilon_0, 2 \gamma\left|p_v\left(\bar{v}_r\right)\right|>\left|p_v\left(\bar{v}_l\right)\right| $ |
it holds that
$ \begin{aligned} &\left\|\left(\mathit{\Psi }, \mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}\right)\right\|^2(t)+ \\ &\int_0^t\left\|\sqrt{\left(v^s\right)^{\prime}}\left(\mathit{\Phi }, Z(\gamma-1)^{-\frac{1}{2}}\right)\right\|^2(\tau) \mathrm{d} \tau+ \\ &\int_0^t\left\|\left(\mathit{\Phi }_x, Z_x\right)\right\|^2(\tau) \mathrm{d} \tau \leqslant C N(0)^2+ \\ &C \delta \int_0^t\left\|\left(z, z_x, \mathit{\Phi }_{x x}\right)\right\|^2(\tau) \mathrm{d} \tau+ \\ &C(\varepsilon+\delta) \int_0^t\left\|\mathit{\Psi }_x\right\|^2(\tau) \mathrm{d} \tau \end{aligned} $ |
Proof Multiply (18)1 by Ψ, (18)2 by
$ \begin{aligned} &I_1(\mathit{\Psi }, \mathit{\Phi }, Z)_t+I_2\left(\mathit{\Phi }, \mathit{\Phi }_x\right)+I_3\left(Z, Z_x\right)= \\ &\quad I_4\left(\mathit{\Phi }, Z, \mathit{\Psi }_x, Z_x\right)+\frac{v^s}{\xi} F_1 \mathit{\Phi }+\frac{F_2 Z}{\xi^2}+(\cdots)_x \end{aligned} $ | (25) |
where
$ \begin{aligned} &I_1(\mathit{\Psi }, \mathit{\Phi }, Z)=\frac{\mathit{\Psi }^2}{2}+\frac{v^s}{2 \xi} \mathit{\Phi }^2+\frac{Z^2}{2(\gamma-1) \xi^2} \\ &I_2\left(\mathit{\Phi }, \mathit{\Phi }_x\right)=\left[\frac{\gamma-1}{\xi}\left(u^s\right)^{\prime}-\left(\frac{v^s}{2 \xi}\right)_t\right] \mathit{\Phi }^2+ \\ &\left(\frac{1}{\xi}\right)_x \mathit{\Phi } \mathit{\Phi }_x+\frac{\mathit{\Phi }_x^2}{\xi} \\ &I_3\left(Z, Z_x\right)=-\left[\frac{1}{2(\gamma-1) \xi^2}\right]_t Z^2+\frac{Z_x^2}{v^s \xi^2}+ \\ &\left(\frac{1}{v^s \xi^2}\right)_x Z Z_x \\ &I_4\left(\mathit{\Phi }, Z, \mathit{\Psi }_x, Z_x\right)=\frac{\gamma-1}{v^s \xi^2}\left(u^s\right)^{\prime} \mathit{\Phi } Z_x+ \\ &{\left[\frac{\gamma-1}{v^s \xi^2}\right]_x\left(u^s\right)^{\prime} \mathit{\Phi } Z+\frac{\left(\theta^s\right)^{\prime} \mathit{\Psi }_x Z}{\left(v^s\right)^2 \xi^2}:=I_4^1+I_4^2+I_4^3} \end{aligned} $ |
where (…) represents the conservative terms. It will vanish after integration concerning x over
$ \xi=\bar{p}_r+\sigma^2 \bar{v}_r-\sigma^2 v^s=\bar{p}_l+\sigma^2 \bar{v}_l-\sigma^2 v^s $ |
By the monotonicity of vs, there is
$ \bar{p}_l \leqslant \xi \leqslant \bar{p}_l $ | (26) |
Furthermore, there is
$ \begin{gathered} \xi_x=-\sigma^2\left(v^s\right)^{\prime}=\sigma(U) \\ \xi_t=-\sigma^2\left(u^s\right)^{\prime} \end{gathered} $ |
Here
$ \begin{aligned} I_2=& {\left[\frac{\gamma-1}{\xi}\left(u^s\right)^{\prime}-\left(\frac{v^s}{2 \xi}\right)_t\right] \mathit{\Phi }^2+\left(\frac{1}{\xi}\right)_x \mathit{\Phi } \mathit{\Phi }_x+} \\ & \frac{\mathit{\Phi }_x^2}{\xi}:=\tilde{\mathit{\Phi }}_x^2+\left(\frac{3}{2}-\gamma\right)\left(-\left(u^s\right)^{\prime}\right) \tilde{\mathit{\Phi }}^2+\\ & \frac{\sigma^2 v^s p^s}{2 \xi^2}\left(-\left(u^s\right)^{\prime}\right) \tilde{\mathit{\Phi }}^2+a_{11}\left[\left(u^s\right)^{\prime}\right]^2 \tilde{\mathit{\Phi }}^2 \end{aligned} $ | (27) |
It is easy to see that if
$ \begin{aligned} I_3=&-\left[\frac{1}{2(\gamma-1) \xi^2}\right]_t Z^2+\frac{Z_x^2}{v^s \xi^2}+\left(\frac{1}{v^s \xi^2}\right)_x Z Z_x=\\& -\left[\frac{\sigma^2\left(u^s\right)^{\prime} v^s}{\xi(\gamma-1)}\right] \tilde{Z}^2+\left[\tilde{Z}_x^2\right]-\left(\frac{1}{v^s \xi^2}\right)\left[\left(\sqrt{v^s} \xi\right)_x\right]^2 \cdot \\& \tilde{Z}^2=\left[\tilde{Z}_x^2\right]-\left[\frac{\sigma^2\left(u^s\right)^s v^s}{\xi(\gamma-1)}\right] \tilde{Z}^2-\left(\frac{1}{v^s \xi^2}\right)\left[-\sqrt{v^s} \sigma^2+\right.\\& \left.\frac{1}{2} \frac{1}{\sqrt{v^s}} \xi\right]^2\left(\left(v^s\right)^{\prime}\right)^2 \tilde{Z}^2:=a_{22} \tilde{Z}_x^2+\\& \frac{\sigma^2 v^s p^s}{\xi^2(\gamma-1)}\left(-\left(u^s\right)^{\prime}\right) \tilde{Z}^2+a_{33}\left(u^s\right)^{\prime 2} \tilde{Z}^2 \end{aligned} $ |
$ \begin{aligned} I_4^1=& \frac{\gamma-1}{v^s \xi^2}\left(u^s\right)^{\prime} \mathit{\Phi } Z_x=\frac{\gamma-1}{v^s \xi^2}\left(u^s\right)^{\prime} \sqrt{\xi} \tilde{\mathit{\Phi }}\left(\xi \sqrt{v^s} \tilde{Z}\right)_x=\\ & \frac{\gamma-1}{v^s \xi^2}\left(u^s\right)^{\prime} \sqrt{\xi} \tilde{\mathit{\Phi }}\left(\xi \sqrt{v^s}\right)_x \tilde{Z}+\\ & \frac{\gamma-1}{v^s \xi^2}\left(u^s\right)^{\prime} \sqrt{\xi} \tilde{\mathit{\Phi }}\left(\xi \sqrt{v^s}\right) \tilde{Z}_x=\\ & \frac{\gamma-1}{\sqrt{v^s \xi}}\left(u^s\right)^{\prime} \tilde{\mathit{\Phi }} \tilde{Z}_x+\frac{\gamma-1}{v^s \xi^{\frac{3}{2}}}\left(u^s\right)^{\prime}\left(\xi \sqrt{v^s}\right)_x \tilde{Z} \tilde{\mathit{\Phi }}:=\\ & 2 a_{12}\left(u^s\right)^{\prime} \tilde{\mathit{\Phi }} \tilde{Z}_x+H_2 \end{aligned} $ |
and
$ \begin{aligned} &I_4^2+H_2=\left[\frac{\gamma-1}{v^s \xi^2}\right]_x\left(u^s\right)^{\prime} \mathit{\Phi } Z+ \\ &\quad \frac{\gamma-1}{v^s \xi^{\frac{3}{2}}}\left(u^s\right)^{\prime}\left(\xi \sqrt{v^s}\right)_x \tilde{Z} \tilde{\mathit{\Phi }}= \\ &{\left[\frac{\gamma-1}{v^s \xi^2}\right]_x\left(u^s\right)^{\prime} v^{\frac{1}{2}} \xi^{\frac{3}{2}} \tilde{\mathit{\Phi }} \tilde{Z}+\frac{\gamma-1}{v^s \xi^{\frac{3}{2}}}\left(u^s\right)\left(\xi \sqrt{v^s}\right)_x \tilde{Z} \tilde{\mathit{\Phi }}=} \\ &(\gamma-1)\left(u^s\right)^{\prime} \tilde{\mathit{\Phi }} \tilde{Z}\left[\left(\frac{1}{v^s \xi^2}\right)_x \sqrt{v^s} \xi^{\frac{3}{2}}+\frac{\left(\xi \sqrt{v^s}\right)_x}{v^s \xi^{\frac{3}{2}}}\right]=\\ &(\gamma-1)\left(u^s\right)^{\prime} \tilde{\mathit{\Phi }} \tilde{Z}\left[\left(\frac{1}{v^s \xi^2}\right)_x \sqrt{v^s} \xi+\frac{\left(\xi \sqrt{v^s}\right)_x}{v^s \xi^2}\right] \sqrt{\xi}:=\\ &2 a_{13}\left[\left(u^s\right)^{-}\right]^2 \tilde{Z} \tilde{\mathit{\Phi }} \end{aligned} $ | (28) |
where
$ \begin{aligned} a_{11}=& \frac{\sigma^2}{4 \xi^2}, a_{22}=1, a_{12}=\frac{\gamma-1}{2 \sqrt{v^s \xi}} \\ a_{13}=&-\frac{\gamma-1}{2 v^s \xi^{\frac{3}{2}}}\left[\sigma \sqrt{v^s}-\xi \frac{1}{2 \sqrt{v^s} \sigma}\right] \\ a_{33}=& \frac{\sigma^2}{\xi^2(\gamma-1)}\left[1-\left(-\sqrt{v^s} \sigma^2+\right.\right.\\ &\left.\left.\frac{1}{2} \frac{1}{\sqrt{v^s}} \xi\right)^2 \frac{\gamma-1}{v^s \sigma^4}\right] \end{aligned} $ |
Define
$ \begin{gathered} X: = \left( {{{\left( {{u^s}} \right)}^{\prime}}\mathit{\tilde \Phi },{{\tilde Z}_x},{{\left( {{u^s}} \right)}^{\prime}}\tilde Z} \right)\\ \boldsymbol{A}=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & 0 \\ a_{13} & 0 & a_{33} \end{array}\right) \end{gathered} $ |
To make sure XAXT>0, i.e., the matrix A is positive, the following two conditions should be satisfied:
$ \left\{\begin{array}{l} \beta^2<\frac{\sigma^2 v^s}{\xi} \\ \beta^2+\left(\frac{\sigma^2 v^s}{\xi}+\frac{1}{4} \frac{\xi}{\sigma^2 v^s}-1\right) \beta-\frac{\sigma^2 v^s}{\xi} <0 \end{array}\right. $ | (29) |
where β=γ-1. It is clear that (29)2 contains(29)1. So if
$ \gamma <1+\min \left\{\frac{\frac{\sigma^2 \bar{v}_l}{\bar{p}_l}}{\frac{\sigma^2 \bar{v}_l}{\bar{p}_l}+\frac{\bar{p}_l}{4 \sigma^2 \bar{v}_l}}, 0.5\right\} $ | (30) |
holds, expression (29) could be true, which uses the fact that function
$ \boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^{\mathrm{T}} \geqslant c_0\left(\left[\left(u^s\right)^{\prime}\right]^2 \tilde{\mathit{\Phi }}^2+\left[\left(u^s\right)^{\prime}\right]^2 \tilde{Z}^2+\tilde{Z}_x^2\right) $ |
Besides, by expression (10) and Cauchy inequality, I43 can be estimated as
$ \begin{aligned} I_4^3=& \frac{\left(\theta^s\right)^{\prime} \mathit{\Psi }_x Z}{\left(v^s\right)^2 \xi^2}=\frac{\left(\theta^s\right)^{\prime} \mathit{\Psi }_x \xi \sqrt{v^s} \tilde{Z}}{\left(v^s\right)^2 \xi^2}=\frac{\left(\theta^s\right)^{\prime} \mathit{\Psi }_x \tilde{Z}}{\left(v^s\right)^{\frac{3}{2}} \xi} \leqslant \\ &-\frac{p^s}{2}\left[\frac{\sigma^2\left(u^s\right)^{\prime} v^s}{\xi^2(\gamma-1)}\right] \tilde{Z}^2-\frac{\gamma-1}{2\left(v^s\right)^4 p^s \sigma^2\left(u^s\right)^{\prime}} \cdot \\ &\left(\theta^s\right)^{\prime 2} \mathit{\Psi }_x^2 \leqslant-\frac{p^s}{2}\left[\frac{\sigma^2\left(u^s\right)^{\prime} v^s}{\xi^2(\gamma-1)}\right] \tilde{Z}^2+\\ & C(\gamma-1)\left|\frac{\left(\theta^s\right)^{\prime}}{\left(v^s\right)^{\prime}}\right|\left(\theta^s\right)^{\prime} \mathit{\Psi }_x^2 \leqslant \\ & \frac{1}{2}\left[\frac{\sigma^2 v^s p^s}{\xi^2(\gamma-1)}\right]\left(-\left(u^s\right)^{\prime}\right) \tilde{Z}^2+\\ & C(\gamma-1)^3\left|\bar{v}_r-\bar{v}_l\right|^2 \mathit{\Psi }_x^2 \leqslant \\ & \frac{1}{2}\left[ {\frac{{{\sigma ^2}{v^s}{p^s}}}{{{\xi ^2}(\gamma - 1)}}} \right]\left( { - {{\left( {{u^s}} \right)}^{\prime} }} \right){\tilde Z^2} + C\varepsilon \mathit{\Psi } _x^2 \end{aligned} $ |
Utilizing expressions (19) and (20), the following expressions are obtained:
$ \begin{gathered} \left|\frac{v^s}{\xi} \mathit{\Phi } F_1\right|=\left|\frac{v^s}{\xi^{\frac{1}{2}}} \tilde{\mathit{\Phi }} F_1\right| \leqslant C\left(\mathit{\Psi }_x^2+\mathit{\Phi }_x^2+\right. \\ \left.z^2+\phi_x^2\right)|\tilde{\mathit{\Phi }}| \end{gathered} $ |
and
$ \begin{gathered} \left|\frac{Z}{\xi^2} F_2\right|=\left|\frac{\sqrt{v^s} \tilde{Z}}{\xi} F_2\right| \leqslant C\left(\mathit{\Psi }_x^2+\mathit{\Phi }_x^2+z^2+\right. \\ \left.\phi_x^2+z_x^2\right)|\tilde{Z}| \end{gathered} $ | (31) |
From expressions (25) and (28)-(31), there is
$ \begin{array}{l} {\left\{ {\frac{{{\mathit{\Psi }^2}}}{2} + \frac{{{v^s}}}{{2\xi }}{\mathit{\Phi }^2} + \frac{{{Z^2}}}{{2(\gamma - 1){\xi ^2}}}} \right\}_t} + \mathit{\widetilde \Phi }_x^2 + \left[ {\left( {\frac{3}{2} - \gamma } \right) + } \right.\\ \left. {\;\;\;\frac{{{\sigma ^2}{v^s}{p^s}}}{{2{\xi ^2}}}} \right]\left( { - {{\left( {{u^s}} \right)}^\prime }} \right){\mathit{\widetilde \Phi }^2} + {c_0}{\left( {{{\left( {{u^s}} \right)}^\prime }} \right)^2}{\mathit{\widetilde \Phi }^2} + \\ \;\;\;{c_0}\tilde Z_x^2 + \frac{{{p^s}}}{2}\left[ {\frac{{{\sigma ^2}{v^s}}}{{{\xi ^2}(\gamma - 1)}}} \right]\left( { - {{\left( {{u^s}} \right)}^\prime }} \right){{\tilde Z}^2} + \\ \;\;\;{c_0}{\left[ {{{\left( {{u^s}} \right)}^\prime }} \right]^2}{{\tilde Z}^2} \le C\varepsilon \mathit{\Psi }_x^2 + C\delta \left( {\mathit{\Psi }_x^2 + \mathit{\Phi }_x^2 + } \right.\\ \;\;\;\left. {{z^2} + z_x^2 + \mathit{\Phi }_{xx}^2} \right) \end{array} $ | (32) |
Integrating expression (32) with
Lemma 3.2 Under the same assumptions of Proposition 2.1, it follows that
$ \left\|\mathit{\Psi }_x\right\|^2(t)+\int_0^t\left\|\mathit{\Psi }_x\right\|^2(\tau) \mathrm{d} \tau \leqslant C N(0)^2+ \\C \int_0^t\left\|\left(\sqrt{\left(v^s\right)^{\prime}} \mathit{\Phi }, \mathit{\Phi }_x, Z_x\right)\right\|^2(\tau) \mathrm{d} \tau+ \\C \delta \int_0^t\left\|\left(z, \phi_x, z_x\right)\right\|^2(\tau) \mathrm{d} \tau+C \sup\limits_{0 \leqslant \tau \leqslant t}\|\mathit{\Phi }\|^2(\tau) $ | (33) |
Proof Multiply (18)2 by -vsΨx, using (18)1, the following equation is obtained:
$ \begin{array}{l} \left(\frac{\mathit{\Psi }_x^2}{2}-v^s \mathit{\Psi }_x \mathit{\Phi }\right)_t+\xi \mathit{\Psi }_x^2=\left(v^s\right)^{\prime} \mathit{\Phi }_x \mathit{\Phi }+v^s \mathit{\Phi }_x^2+ \\ \;\;\;\; \mathit{\Psi }_x Z_x+(\gamma-2)\left(u^s\right)^{\prime} \mathit{\Psi }_x \mathit{\Phi }-v^s F_1 \mathit{\Psi }_x+ \\ \;\;\;\; (\cdots)_x \end{array} $ | (34) |
Integrate expression (34) with respect to (x, t) with
$ \begin{aligned} \int_{-\infty}^{\infty} &\left(\frac{\mathit{\Psi }_x^2}{2}-v^s \mathit{\Psi }_x \mathit{\Phi }\right) \mathrm{d} x+\xi \int_0^t \int_{-\infty}^{\infty} \mathit{\Psi }_x^2 \mathrm{~d} x \mathrm{~d} \tau=\\ &\left.\int_{-\infty}^{\infty}\left(\frac{\mathit{\Psi }_x^2}{2}-v^s \mathit{\Psi }_x \mathit{\Phi }\right) \mathrm{d} x\right|_{t=0}+\int_0^t \int_{-\infty}^{\infty}\left(v^s\right)^{\prime} \mathit{\Phi }_x \mathit{\Phi } \mathrm{d} x \mathrm{~d} \tau+\\ & \int_0^t \int_{-\infty}^{\infty} v^s \mathit{\Phi }_x^2 \mathrm{~d} x \mathrm{~d} \tau+\int_0^t \int_{-\infty}^{\infty} \mathit{\Psi }_x Z_x \mathrm{~d} x \mathrm{~d} \tau+\\ &(\gamma-2) \int_0^t \int_{-\infty}^{\infty}\left(u^s\right)^{\prime} \mathit{\Psi }_x \mathit{\Phi } \mathrm{d} x \mathrm{~d} \tau-\int_0^t \int_{-\infty}^{\infty} v^s F_1 \mathit{\Psi }_x \mathrm{~d} x \mathrm{~d} \tau :=\\ &\left.\int_{-\infty}^{\infty}\left(\frac{\mathit{\Psi }_x^2}{2}-v^s \mathit{\Psi }_x \mathit{\Phi }\right) \mathrm{d} x\right|_{t=0}+\sum\limits_{i=i}^5 I_i \end{aligned} $ | (35) |
Now, with expressions (19) and (26), I1-I5 are estimated term by term:
$ \begin{aligned} &I_1+I_2 \leqslant \sup\limits_t\left\|\left(v^s\right)^{\prime}\right\|_{L^{\infty}} \int_0^t\left\|\sqrt{\left(v^s\right)^{\prime}} \mathit{\Phi }\right\|^2(\tau) \mathrm{d} \tau+ \\ &C \int_0^t\left\|\mathit{\Phi }_x\right\|^2(\tau) \mathrm{d} \tau \leqslant C \int_0^t\left\|\sqrt{\left(v^s\right)^{\prime}} \mathit{\Phi }\right\|^2(\tau)+ \\ &\left\|\mathit{\Phi }_x\right\|^2(\tau) \mathrm{d} \tau \\ &I_3+I_4 \leqslant \frac{\xi}{4} \int_0^t\left\|\mathit{\Psi }_x\right\|^2(\tau) \mathrm{d} \tau+ \\ &C \int_0^t\left(\left\|\sqrt{\left(v^s\right)^{\prime}} \mathit{\Phi }\right\|^2+\left\|Z_x\right\|^2\right)(\tau) \mathrm{d} \tau \\ &I_5 \leqslant C \int_0^t \int_{-\infty}^{\infty}\left|\left(\chi, \phi, z, \phi_x\right)\right|^2|\chi| \mathrm{d} x \mathrm{~d} \tau \leqslant \\ &C \delta \int_0^t\left\|\left(\mathit{\Psi }_x, \mathit{\Phi }_x, z, \phi_x\right)\right\|^2(\tau) \mathrm{d} \tau \end{aligned} $ |
If δ is sufficiently small, expression (33) is obtained.
z can be rewritten as
$ z=Z_x+\frac{\gamma-1}{R}\left(\left(u^s\right)^{\prime} \mathit{\Phi }-\frac{1}{2} \phi^2\right) $ | (36) |
Square the left and right ends of expression (36). Integrate the result with respect to (x, t) over
$ \int_0^t\|z\|^2(\tau) \mathrm{d} \tau \leqslant C \int_0^t\left(\left\|Z_x\right\|^2+\left\|\left|\left(v^s\right)^{\prime}\right|^{\frac{1}{2}} \mathit{\Phi }\right\|^2+\right. \\ \;\;\;\;\; \left.\delta^2\|\phi\|^2\right)(\tau) \mathrm{d} \tau $ | (37) |
Lemma 3.3 Under the same assumptions of Proposition 2.1, the following inequality holds:
$ \begin{aligned} &\left\|\left(\chi, \phi, z(\gamma-1)^{-\frac{1}{2}}\right)(t)\right\|^2+ \\ &\quad \int_0^t\left\|\left(\phi_x, z_x\right)\right\|^2(\tau) \mathrm{d} \tau \leqslant C \int_0^t\|(\chi, \phi, z)\|^2(\tau) \mathrm{d} \tau+ \\ &C N(0)^2 \end{aligned} $ | (38) |
Proof Multiplying (15)1 by χ, (15)2 by vsϕ/ξ, (15)3 by z/ξ2, and adding all the results, there is
$ \begin{array}{l} \left(\frac{\chi^2}{2}+\frac{v^s}{2 \xi} \phi^2+\frac{z^2}{2(\gamma-1) \xi^2}\right)_t+\frac{\phi_x^2}{\xi}+\frac{z_x^2}{v^s \xi^2}= \\ \;\; \left(\frac{v^s}{2 \xi}\right)_t \phi^2+\left(\frac{1}{2(\gamma-1) \xi^2}\right)_t z^2-\frac{1}{v^s}\left(\frac{v^s}{\xi}\right)_x \phi \phi_x+ \\ \;\; \frac{v^s}{\xi}\left(\frac{\xi}{v^s}\right)_x \chi \phi-\frac{z z_x}{v^s}\left(\frac{1}{\xi^2}\right)_x+\left[\left(\frac{1}{\xi}\right)_x-\frac{v^s}{\xi}\left(\frac{1}{v^s}\right)_x\right] \cdot \\ \;\; \phi z+\frac{\left(u^s\right)^{\prime} \chi}{v^s}\left(\xi-z+\phi_x\right) \frac{z}{\xi^2}-\left(\frac{\left(\theta^s\right)^{\prime} \chi}{\left(v^s\right)^2}\right)_x \frac{z}{\xi^2}+ \\ \;\; f_1 \frac{v^s \phi}{\xi}+f_2 \frac{z}{\xi^2}+(\cdots)_x \end{array} $ | (39) |
Integrate expression (39) with respect to x and t with
$ \left.\int_{-\infty}^{\infty}\left(\frac{\chi^2}{2}+\frac{v^s}{2 \xi} \phi^2+\frac{z^2}{2(\gamma-1) \xi^2}\right) \mathrm{d} x\right|_0 ^t+ \\ \;\;\; \int_0^t \int_{-\infty}^{\infty}\left(\frac{\phi_x^2}{\xi}+\frac{z_x^2}{v^s \xi^2}\right) \mathrm{d} x \mathrm{~d} \tau \leqslant(\in+ \\\;\;\; C \delta) \int_0^t \int_{-\infty}^{\infty}\left(\phi_x^2+z_x^2\right) \mathrm{d} x \mathrm{~d} \tau+\left(C_{\in}+\right.\\ \;\;\;C \delta) \int_0^t \int_{-\infty}^{\infty}\left(\chi^2+\phi^2+z^2\right) \mathrm{d} x \mathrm{~d} \tau $ |
Choose ∈ and δ with sufficiently small value in the above inequality, there is expression (38).
Lemma 3.4 Under the same assumptions of Proposition 2.1, there is
$ \begin{gathered} \left\|\chi_x(t)\right\|^2+\int_0^t\left\|\chi_x\right\|^2(\tau) \mathrm{d} \tau \leqslant C N(0)^2+ \\ C \sup\limits_{0 \leqslant \tau \leqslant t}\|\phi\|^2(\tau)+C \int_0^t\|(\chi, \phi, z)\|^2(\tau) \mathrm{d} \tau+\\ C \int_0^t\left\|\left(\phi_x, z_x\right)\right\|^2(\tau) \mathrm{d} \tau+C \delta \int_0^t\left\|\phi_{x x}\right\|^2(\tau) \mathrm{d} \tau \end{gathered} $ | (40) |
Proof Multiply (15)2 by -vsχx, and integrate the result with respect to t and x over
$ \begin{aligned} &\int_{-\infty}^{\infty}\left(\frac{\chi_x^2}{2}-v^s \chi_x \phi\right) \mathrm{d} x+\int_0^t \int_{-\infty}^{\infty} \xi \chi_x^2 \mathrm{~d} x \mathrm{~d} \tau= \\ &\left.\int_{-\infty}^{\infty}\left(\frac{\chi_x^2}{2}-v^s \chi_x \phi\right) \mathrm{d} x\right|_{t=0}-\int_0^t \int_{-\infty}^{\infty} v^s f_1 \chi_x \mathrm{~d} x \mathrm{~d} \tau+ \\ &\int_0^t \int_{-\infty}^{\infty} v^s \phi_x^2 \mathrm{~d} x \mathrm{~d} \tau-\int_0^t \int_{-\infty}^{\infty} v_t^s \chi_x \phi \mathrm{d} x \mathrm{~d} \tau+ \\ &\int_0^t {\int_{ - \infty }^\infty {{\chi _x}} } {z_x}{\rm{d}}x{\rm{d}}\tau - \int_0^t {\int_{ - \infty }^\infty {{v^s}} } {\left( {\frac{\xi }{{{v^s}}}} \right)_x}\chi {\chi _x}{\rm{d}}x{\rm{d}}\tau + \\ &\int_0^t \int_{-\infty}^{\infty} v^s\left(\frac{1}{v^s}\right)_x \chi_x z \mathrm{~d} x \mathrm{~d} \tau-\int_0^t \int_{-\infty}^{\infty} v^s\left(\frac{1}{v^s}\right)_x . \\ &\chi_x \phi_x \mathrm{~d} x \mathrm{~d} \tau+\int_0^t \int_{-\infty}^{\infty}\left(v^s\right)^{\prime} \phi_x \phi \mathrm{d} x \mathrm{~d} \tau:= \\ &\left.\int_{-\infty}^{\infty}\left(\frac{\chi_x^2}{2}-v^s \chi_x \phi\right) \mathrm{d} x\right|_{t=0}+\sum\limits_{i=1}^8 A_i \end{aligned} $ | (41) |
With expression (17), there is
$ \begin{gathered} A_1 \leqslant C \int_0^t \int_{-\infty}^{\infty}\left|f_1 \chi_x\right| \mathrm{d} x \mathrm{~d} \tau \leqslant \frac{1}{8} \int_0^t \int_{-\infty}^{\infty} \xi \chi_x^2 \mathrm{~d} x \mathrm{~d} \tau+ \\ C \delta \int_0^t\left\|\left( {\chi , {\chi _x}, z, {z_x}, {\phi _x}, {\phi _{xx}}} \right)\right\|^2(\tau) \mathrm{d} \tau \end{gathered} $ |
For i=2-8, the Cauchy inequality yields:
$ \begin{aligned} A_i \leqslant & \frac{1}{8} \int_0^t \int_{-\infty}^{\infty} \xi \chi_x^2 \mathrm{~d} x \mathrm{~d} \tau+C \int_0^t\left(\|\phi\|^2+\left\|\phi_x\right\|^2+\right.\\ &\left.\|\chi\|^2+\|z\|^2+\left\|z_x\right\|^2\right)(\tau) \mathrm{d} \tau \end{aligned} $ | (42) |
Using the above inequalities, by taking δ with small enough value, there is expression (40).
By the same method, the highest-order estimate is obtained. For the sake of simplicity, the proof is omitted.
Lemma 3.5 Under the same assumptions of Proposition 2.1, it holds that
$ \begin{aligned} &\left\|\left(\chi_x, \phi_x z_x(\gamma-1)^{-\frac{1}{2}}\right)(t)\right\|^2+\int_0^t\left\|\left(\phi_{x x} z_{x x}\right)(\tau)\right\|^2 \mathrm{~d} \tau \leqslant \\ &C N(0)^2+C \int_0^t\left\|\left(\chi, \phi, z, \chi_x, \phi_x, z_x\right)(\tau)\right\|^2 \mathrm{~d} \tau \end{aligned} $ |
Combining expression (37), Lemma 3.1-Lemma 3.5, and δ, ε with suitably small value, expression (22) is obtained. Thus the proof of the a priori estimate is accomplished.
[1] |
Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Communications in Mathematical Physics, 1985, 101(1): 97-127. DOI:10.1007/BF01212358 (0) |
[2] |
Huang B K, Tang S J, Zhang L. Nonlinear stability of viscous shock profiles for compressible Navier-Stokes equations with temperature-dependent transport coefficients and large initial perturbation. Zeitschrift Für Angewandte Mathematik und Physik, 2018, 69(6): 136. DOI:10.1007/s00033-018-1026-6 (0) |
[3] |
Freistuhler H, Serre D. L1 stability of shock waves in scalar viscous conservation laws. Commincations on Pure and Applied Mathematics, 1998, 51(3): 291-301. DOI:10.1002/(SICI)1097-0312(199803)51:3<291::AID-CPA4>3.0.CO;2-5 (0) |
[4] |
Gilbarg D. The existence and limit behavior of the one-dimensional shock layer. American Journal of Mathematics, 1951, 73(2): 256-274. DOI:10.2307/2372177 (0) |
[5] |
Liu T. Pointwise convergence to shock waves for viscous conservation laws. Communications on Pure and Applied Mathematics, 1997, 50(11): 1113-1182. DOI:10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D (0) |
[6] |
Liu T P, Zeng Y N. Time-asymptotic behavior of wave propagation around a viscous shock profile. Communications in Mathematical Physics, 2009, 290(1): 23-82. DOI:10.1007/s00220-009-0820-6 (0) |
[7] |
Liu T P, Zeng Y N. Shock Waves in Conservation Laws with Physical Viscosity. Providence, Rhode Island: Memoirs of the American Mathematical Society, 2015.
(0) |
[8] |
Mascia C, Zumbrun K. Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic system. Archive for Rational Mechanics and Analysis, 2004, 172(1): 93-131. DOI:10.1007/s00205-003-0293-2 (0) |
[9] |
Matsumura A. Waves in Compressible Fluids: Viscous Shock, Rarefaction, and Contact Waves. Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Cham: Springer, 2018. 2495-2548.
(0) |
[10] |
Matsumura A, Nishihara K. Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity. Communications in Mathematical Physics, 1994, 165(1): 83-96. DOI:10.1007/BF02099739 (0) |
[11] |
Szepessy A, Xin Z P. Nonlinear stability of viscous shock waves. Archive for Rational Mechanics and Analysis, 1993, 122(1): 53-103. DOI:10.1007/BF01816555 (0) |
[12] |
Humpherys J, Lyng G, Zumbrun K. Multidimensional stability of large-amplitude Navier-Stokes shocks. Archive for Rational Mechanics and Analysis, 2017, 226(3): 923-973. DOI:10.1007/s00205-017-1147-7 (0) |
[13] |
Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japanese Journal of Applied Mathematics, 1985, 2(1): 17-25. (0) |
[14] |
Matsumura A, Mei M. Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Archive for Rational Mechanics and Analysis, 1999, 146(1): 1-22. DOI:10.1007/s002050050134 (0) |
[15] |
Matsumura A, Wang Y. Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity. Methods and Applications of Analysis, 2010, 17(3): 279-290. (0) |
[16] |
Vasseur A, Yao L. Nonlinear stability of viscous shock wave to one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscous coefficient. Communications in Mathematical Sciences, 2016, 14(8): 2215-2228. DOI:10.4310/CMS.2016.v14.n8.a5 (0) |
[17] |
He L, Huang F M. Nonlinear stability of large amplitude viscous shock wave for general viscous gas. Journal of Differential Equations, 2020, 269(2): 1226-1242. DOI:10.1016/j.jde.2020.01.004 (0) |
[18] |
Huang F M, Matsumura A. Stability of a composite wave of two viscous shock waves for full compressible Navier-Stokes equation. Communications in Mathematical Physics, 2009, 289(3): 841-861. DOI:10.1007/s00220-009-0843-z (0) |