Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:LIU Zhen-tao,CAO Bei,SHEN Xu-bang.Improved design of proposal distribution for particle filter[J].Journal of Harbin Institute Of Technology(New Series),2012,19(6):72-78.DOI:10.11916/j.issn.1005-9113.2012.06.013.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 1814times   downloaded 1333times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Improved design of proposal distribution for particle filter
Author NameAffiliation
LIU Zhen-tao School of Microelectronics, Xidian University, Xi′an 710071, China 
CAO Bei Xi′an Institute of Optics and Precision Mechanics of CAS, Xi′an 710119, China 
SHEN Xu-bang School of Microelectronics, Xidian University, Xi′an 710071, China 
Abstract:
One crucial issue in particle filtering is the selection of proposal distribution. Good proposal can effectively alleviate particle degeneracy and thus improve filtering accuracy. In this paper, we propose a new type of proposal distribution for particle filter, called as R-IEKF proposal. By combining iterated extended kalman filter with Rauch-Tung-Striebel optimal smoother, the new proposal integrates the latest observation into system and approximates the true posterior distribution reasonably well, hence generating more precise and stable particles against measurement noise. The simulation results indicate that the improved particle filter with R-IEKF proposal prevails over PF-EKF and UPF both in tracking accuracy and filtering stability. Consequently, PF-RIEKF is a competitive choice in noisy measurement environment.
Key words:  particle filter  proposal distribution  IEKF  Rauch-Tung-Striebel (RTS) smoother
DOI:10.11916/j.issn.1005-9113.2012.06.013
Clc Number:TP391
Fund:

LINKS