Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Jiuzhou Gao,Hongguang Jia.Control Research for a Small Fixed-Wing UAV During Ground Taxiing[J].Journal of Harbin Institute Of Technology(New Series),2017,24(2):51-57.DOI:10.11916/j.issn.1005-9113.15249.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 12207times   downloaded 7824times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Control Research for a Small Fixed-Wing UAV During Ground Taxiing
Author NameAffiliation
Jiuzhou Gao Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun 130033, China
University of Chinese Academy of Sciences, Beijing 100039, China 
Hongguang Jia Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun 130033, China 
Abstract:
Ground taxiing is the key process of take-off and landing for a tricycle-undercarriage unmanned aerial vehicle (UAV). Nonlinear model of a sample UAV is established based on stiffness and damping model of landing gears and tires taken into account. Then lateral nonlinear model is linearized and state space equations are deduced by using nose wheel and ruder as inputs and lateral states as outputs. Adaptive internal model control (AIMC) is proposed and applied to lateral control based on decoupled and linearized dynamic model during ground taxiing process. Different control strategies are analyzed and compared by simulations, and then a combined control strategy of nose wheel steering with holding and rudder control is given. Hardware in loop simulations (HILS) proves the validity of the controller designed.
Key words:  ground taxiing  landing gears and tires model  AIMC  control strategy  HILS
DOI:10.11916/j.issn.1005-9113.15249
Clc Number:V19
Fund:
Descriptions in Chinese:
  

小型固定翼无人机地面滑跑控制

高九州12,贾宏光1

(1.中国科学院长春光学精密机械与物理研究所;2.中国科学院大学)

创新点说明:

本文建立了无人机地面滑跑过程中的起落架机轮模型,并将系统非线性模型解耦为横向运动和纵向运动,重点研究了横向滑跑运动的航向和偏距的纠偏控制。

根据滑跑过程中横向运动的模型特征,提出了自适应内模控制算法,将该算法用于横向滑跑控制,非线性系统仿真给出滑跑纠偏控制的策略,半物理试验验证全系统工作的协调性和控制系统的有效性。

研究目的:

解决固定翼无人机滑跑起降过程引起航向和偏距过大的问题,放宽了滑跑起降对跑道宽度的要求,降低了因横向侧偏过大引起起降事故的概率。

研究方法:

(1)建立起落架机轮模型;

(2)非线性模型解耦,提取滑跑空速、侧滑角和航向角为状态变量,建立滑跑过程横向运动的线性模型;

(3)以自适应和内模控制理论为基础,针对被控模型的特点,提出自适应内模控制算法;

(4)非线性系统仿真给出滑跑纠偏控制的策略,半物理试验验证全系统工作的协调性和控制系统的有效性。

结果:

(1)横向滑跑纠偏控制策略是空速小于20m/s时采用前轮进行纠偏,空速大于20m/s时采用方向舵进行纠偏控制;

(2)纵向控制策略,当空速小于33.33m/s时,通过升降舵保持前后轮压力比,当空速大于120m/s时,通过升降舵使无人机瞬间增大俯仰角,达到离地起飞的目的。

(3)在航向偏差10°,偏距2m的条件下或横向风场8m/s的条件下,控制系统横向纠偏控制效果明显,并经半物理试验验证了全系统工作的协调性与控制系统有效性。

结论:

所设计的控制系统具有良好的控制效果,通过半物理试验验证了全机系统工作的协调性,为进一步飞行试验奠定了理论基础,所设计的控制算法具有一定的工程实用价值。

关键词:地面滑跑,起落架机轮模型,自适应内模控制,控制策略,半物理试验

LINKS