|
Abstract: |
Based on the deep analysis of the mathematical model of an autonomous underwater vehicle (AUV), comprehensive considerations are given to the coupling effect of AUV's longitudinal velocity on the other degrees of freedom. In the meantime, discussions are made on the influence of residual buoyancy and restoring moment. A novel S-plane controller established on sliding mode control (SMC) is hereby proposed in this study. The strengths of traditional S-plane controller including simple structure and easily adjustable parameters are maintained in the improved design while the weakness of unsatisfactory control effect at the time of high-speed operation is also overcome. Lyapunov function is introduced to make the stability analysis of the controller before it is successfully applied to the basic motion control of AUV-X. Then the comparative experiment test is carried out between the traditional S-plane controller and the novel S-plane controller. The effectiveness and feasibility of the novel S-plane controller established on sliding mode control in the AUV basic motion control is verified by the comparative analysis of experiment results. |
Key words: sliding mode control S-plane controller stability analysis Lyapunov function autonomous underwater vehicle |
DOI:10.11916/j.issn.1005-9113.2017.02.008 |
Clc Number:TP242.6 |
Fund: |
|
Descriptions in Chinese: |
本文在深入分析智能水下机器人(AUV)数学模型的条件下,权衡考虑了AUV的纵向速度对其他自由度产生的耦合影响,同时探讨了它自身所受剩余浮力与恢复力矩的影响,据此提出了一种基于滑模变结构的新型S面控制器。该控制器在保持普通S面控制器结构简单、参数易于调节的优点基础上,可克服AUV高速航行时采用普通S面控制器控制效果不佳的缺点;引入李雅谱诺夫函数开展控制器的稳定性分析,并将基于滑模变结构的新型S面控制器成功应用在AUV-X的基础运动控制上。开展了与普通S面控制器的对比试验,完成了试验结果对比分析,验证了文中提出的基于滑模变结构的新型S面控制器在AUV基础运动控制方面的有效性及可行性。 |