Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Zhiping Qiu,Yuning Zheng,Lei Wang.Review:Recent Developments in the Non-Probabilistic Finite Element Analysis[J].Journal of Harbin Institute Of Technology(New Series),2017,24(4):1-8.DOI:10.11916/j.issn.1005-9113.17046.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 10364times   downloaded 7699times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Review:Recent Developments in the Non-Probabilistic Finite Element Analysis
Author NameAffiliation
Zhiping Qiu,Yuning Zheng,Lei Wang (Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China) 
Abstract:
Generally, the finite element analysis of a structure is completed under deterministic inputs. However, uncertainties corresponding to geometrical dimensions, material properties, boundary conditions cannot be neglected in engineering applications. The probabilistic methods are the most popular techniques to handle these uncertain parameters but subjective results could be obtained if insufficient information is unavailable. Non-probabilistic methods can be alternatively employed, which has led to the procedures for non-probabilistic finite element analysis. Each non-probabilistic finite element analysis method consists of two individual parts, including the core algorithm and pre-processing procedure. In this context, three types of algorithms and two typical pre-processing procedures as well as their effectiveness are described in detail, based on which novel hybrid algorithms can be conceived for the specific problems and the future work in this research field can be fostered.
Key words:  non-probabilistic  finite element analysis  perturbation approach  subinterval technique  surrogate model
DOI:10.11916/j.issn.1005-9113.17046
Clc Number:V214.1
Fund:
Descriptions in Chinese:
  

综述:非概率有限元分析的研究进展

邱志平,郑宇宁,王磊

(北京航空航天大学 航空科学与工程学院)

创新点说明:

通过将非概率有限元计算中的预处理方法与传统不确定传播分析方法相结合,形成新型混合分析算法,能够提高非概率结构有限元分析的计算效率和精度。

研究目的:

探索改善非概率结构有限元分析效率和精度的新方法。

研究方法:

首先,对非概率有限元分析方法的研究现状进行了介绍,重点对现有用于非概率有限元分析的两种预处理方法,包括代理模型法、子区间法的基本流程和特点进行对比分析。同时,对非概率不确定传播分析方法,包括优化方法、摄动方法和抽样方法等核心算法进行综述,总结其适用范围和存在的缺陷。在此基础上,将预处理方法与核心算法相结合,对所形成的混合分析算法进行研究,总结提高传统非概率结构有限元分析方法效率和精度的新途径。

结果:

通过对非概率有限元分析中的前处理方法(如代理模型法、子区间法)和核心算法(优化方法、摄动方法、抽样方法)的综述,得出了可以将不同前处理方法与核心算法相结合、形成混合算法以提高非概率有限元分析效率和精度的分析结果。

结论:

基于代理模型和子区间的混合方法具有提高传统非概率结构有限元分析效率和精度的潜力和优势,需要在未来进一步发展以此为基础的相关高效、高精度数值计算方法。

关键词:非概率、有限元分析、摄动理论、子区间技术、代理模型

LINKS