Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Yong Wang,Pengkai Zhu.Novel and Comprehensive Approach for the Feature Extraction and Recognition Method Based on ISAR Images of Ship Target[J].Journal of Harbin Institute Of Technology(New Series),2017,24(5):12-19.DOI:10.11916/j.issn.1005-9113.17038.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 11456times   downloaded 7099times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Novel and Comprehensive Approach for the Feature Extraction and Recognition Method Based on ISAR Images of Ship Target
Author NameAffiliation
Yong Wang Research Institute of Electronic Engineering Technology, Harbin Institute of Technology, Harbin 150001, China 
Pengkai Zhu Research Institute of Electronic Engineering Technology, Harbin Institute of Technology, Harbin 150001, China 
Abstract:
This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images for the real data compared with the simulated ISAR images are analyzed firstly. Then, the novel technique for the target recognition is proposed, and it consists of three steps, including the preprocessing, feature extraction and classification. Some segmentation and morphological methods are used in the preprocessing to obtain the clear target images. Then, six different features for the ISAR images are extracted. By estimating the features conditional probability, the effectiveness and robustness of these features are demonstrated. Finally, Fisher's linear classifier is applied in the classification step. The results for the all-feature space are provided to illustrate the effectiveness of the proposed method.
Key words:  ISAR images  feature extraction  recognition  ship target
DOI:10.11916/j.issn.1005-9113.17038
Clc Number:TP753
Fund:
Descriptions in Chinese:
  

一种舰船目标实测数据ISAR像的特征提取与识别新方法

王勇,朱鹏凯

(哈尔滨工业大学 电子工程技术研究所,哈尔滨 150001)

创新点说明:

本文基于舰船目标实测数据ISAR成像结果,提出一种新的二维ISAR像特征提取与分类识别方法,具体创新性可说明如下:

1) 舰船目标ISAR像特征提取新方法。包括ISAR像的图像预处理方法,同时给出六种不同特征的提取方法,包括一阶不变矩、二阶不变矩、舰船目标面积、距离单元最大均方偏差、舰船目标长度和桅杆高度。

2) 针对提取出的舰船目标ISAR像特征,文中采用Fisher线性分类器来进行舰船目标的分类识别。以两种不同类型的舰船目标为例,其正确的识别率已超过90%。

研究目的:

为解决基于实测数据ISAR成像结果的舰船目标特征提取与分类识别问题。与仿真数据相比,依据实测数据成像结果进行特征提取与分类识别难度很大,因此本文首先提出有效的图像特征提取方法,进而采用线性分类器完成对舰船目标的分类识别。

研究方法:

1) 舰船目标ISAR像的预处理,包括抑制条纹干扰、中值滤波、数学形态学等,使ISAR像的质量得到进一步提高,便于特征提取。

2) 舰船目标ISAR像的特征提取。分别提取了图像的一阶不变矩、二阶不变矩、舰船目标面积、距离单元最大均方偏差、舰船目标长度和桅杆高度。

3) 舰船目标分类识别。采用Fisher线性分类器来进行舰船目标的分类识别。以两种不同类型的舰船目标为例,其正确的识别率已超过90%。

结果:

1) 文中给出了舰船目标ISAR像的预处理流程,如正文中图3和图4所示。此时ISAR像的质量得到进一步提高。

2) 文中给出了舰船目标ISAR像的特征提取结果,如正文中图5、图6和图7所示。根据这些特征提取结果,可完成对舰船目标的分类识别。

3) 文中选取两种不同类型舰船目标的外场实测数据,并给出相应的识别结果,如正文中表2所示。相应的结果验证了所提特征的有效性。

结论:

对于舰船目标实测数据的ISAR成像结果来说,可通过图像预处理的方法进一步提高图像质量,进而可对舰船目标进行特征提取,并采用分类器完成对不同类型舰船目标的分类识别。本文的研究结果对ISAR成像技术的实际应用奠定了良好的理论和实验基础。

关键词:ISAR图像,特征提取,识别,舰船目标

LINKS