2. 解放军后勤工程学院 国防建筑规划与环境工程系,重庆 401311)
创新点说明:(1)寡营养条件下微生物菌群对进水条件的变化响应迅速;
(2)进水高锰酸盐指数是推动菌群结构变化的关键因素。
研究目的:
针对贫营养的给水生物膜开展研究,旨在考察不同进水条件对生物反应器的微生物菌群内部结构所产生的影响,并通过生物信息学分析各影响因素对菌群结构变化的作用程度。
研究方法:
本研究在不同进水条件下同时启动9个小试反应器(1#-9#),考察反应器启动和稳定运行过程中氨氮的进出水浓度、生物膜表面形貌以及微生物菌群结构的变化情况,并通过计算Shannon指数值和种群分离度值对菌群之间的差异性进行进一步的分析。
具体研究方法如下:
(1)氨氮浓度测定:纳氏试剂分光光度法(T6紫外可见分光光度计 普析通用 北京);
(2)生物膜表面形貌:扫描电镜观察(扫描电镜 Carl Zeiss EV0 LS10 德国);
(3)微生物菌群结构:细菌总DNA提取(DNA 提取试剂盒MOBIO 美国)、细菌16S rRNA序列的PCR扩增(PCR仪/高速离心机 Eppendorf 德国)、DGGE电泳及条带分析(突变检测系统/水平电泳仪 Biorad 美国)、细菌序列比对及菌种鉴定(DNA测序仪 ABI 3730XL 美国);
(4)生物信息学分析:Shannon指数值(Gel-Pro Analyzer软件分析);种群分离度值(基于UPGMA算法的聚类分析)。
结果:
(1)在贫营养条件下,给水生物反应器对进水水质和水力参数的变化较为敏感。较短的水力停留时间不利于生物膜的聚集、进水氨氮浓度的升高导致硝化菌群多样性的增加、进水有机物浓度的升高导致异养菌群多样性的增加。
(2)生物膜中具有典型的一类短杆状细菌,根据细菌菌种鉴定和反应器的功能分析该种细菌应为硝化杆菌属,并且通过生物膜形貌明显观察到该菌属的反应器其氨氮平均去除率均较高(例如8#的氨氮去除率为96.31%),此外生物膜内还主要包括亚硝化单胞菌属和硝化螺菌属等自养硝化细菌。
(3)反应器的微生物菌群主要被不同进水条件划分为两大类,即1#-4#为一类,而5#-9#为另一类。1#和9#反应器的种群分离度值为0.111,高于其他菌群间的分离度值;1#、2#和3#由于进水氨氮浓度的变化而导致其差异性进一步增加;4#和5#也存在着一定程度的菌群差异性。
结论:
(1)在贫营养进水条件下自养硝化细菌(包括AOB和NOB)是生物反应器内的优势菌属。
(2)在一定浓度范围内增加有机物的含量可以促进硝化细菌的生长,然而过高的有机物浓度促进异养细菌生长,自养和异养细菌的竞争作用会导致反应器氨氧化能力的降低。
(3)聚类分析结果表明导致微生物菌群结构差异的主要因素为有机物浓度的变化。
关键词:微生物菌群多样性;生物反应器;聚类分析;进水条件异质性;香农指数