创新点说明:1)定义了Tanner (5,7)准循环LDPC码Tanner图中环的等价类;
2)提出了Tanner (5,7)准循环LDPC码Tanner图中环存在的充要条件,即素域Fp上多项式是否有一个35次单位根;
3)完全解决了Tanner (5,7)准循环LDPC码的围长问题(码长为7p,p为模35余1的素数)
研究目的:解决Tanner (5,7)准循环LDPC码的围长问题(码长为7p,p为模35余1的素数)
研究方法:
本文定义了环的等价形式,并分析了Tanner (5,7)准循环LDPC码Tanner图中的环结构,并将长度为4,6,8和10的环划分为16个等价类。此外,这些环是否存在可以等价地看为素域Fp上多项式是否有一个35次单位根。通过检验这些多项式是否存在一个35次单位根,可以得到Tanner (5,7)准循环LDPC码的围长候选值。最后,统计这些候选值得到了Tanner (5,7)准循环LDPC码的围长。
结 果:
得到了围长为6,8和10的Tanner (5,7)准循环LDPC码,其中码长为7p:
1)当围长为6时,p = 71。
2)当围长为8时,p ? G8 = {211, 281, 421, 491, 631, 701, 911, 1051, 2311, 4271, 5531, 7211, 237301, 354551}。
3) 当围长为10时,p ? G10 = {1471, 2381, 2521, 2591, 2731, 2801, 3011, 3221, 3361, 3571, 3851, 4201, 4481, 4621, 4691, 4831, 5741, 5881, 6091, 6301, 6581, 6791, 7001, 7351, 7561, 7841, 8191, 8681, 8821, 9241, 9311, 9521, 9661, 9871, 9941, 10151, 10501, 10711, 10781, 11131, 11411, 11621, 11831, 11971, 12041, 12251, 12391, 12601, 12671, 13441, 13931, 14071, 14771, 15121, 15541, 16381, 16451, 16661, 16871, 17011, 17291, 17431, 17921, 18061, 18131, 18481, 18691, 19181, 19391, 19531, 20161, 20231, 20441, 21001, 21211, 21491, 21701, 21911, 22051, 22751, 24151, 24781, 25411, 26111, 26251, 28001, 28771, 30661, 30871, 30941, 32971, 33181, 33461, 33811, 34231, 34511, 35141, 36541, 37871, 38011, 39551, 39761, 42491, 43261, 43331, 44171, 45361, 46831, 47041, 47741, 47881, 48371, 50051, 51521, 52361, 54881, 55511, 55721, 57751, 59221, 63841, 65101, 66571, 66851, 67061, 67271, 71191, 74761, 75181, 76231, 79801, 85751, 97441, 98491, 104021, 109831, 110321, 110951, 112771, 118861, 122921, 125231, 126211, 127261, 128591, 130621, 134401, 137131, 141961, 147211, 152041, 154981, 159671, 162821, 164431, 185221, 192431, 203911, 204331, 207061, 217351, 242621, 262781, 273001, 274471, 278741, 280351, 285251, 296731, 299671, 301841, 318641, 325921, 333691, 343141, 343561, 348461, 349931, 361901, 370441, 374291, 385631, 393961, 403621, 423431, 435401, 437501, 440651, 441421, 443591, 446881, 453461, 495461, 522061, 532421, 557831, 589471, 687541, 704761, 718271, 763771, 766501, 829151, 837271, 845951, 867371, 898661, 920641, 1022141, 1180901, 1197281, 1239421, 1253071, 1388381, 1542031, 1634011, 1747271, 1773241, 2102171, 2153551, 2318471, 2691011, 3338441, 3439801, 4567151, 4649261, 8553581, 9268631, 23632351, 27136621}。
结 论:
当p ? P35/({71}? G8?G10)时,Tanner (5,7)准循环LDPC码的围长为12(P35代表模35余1的素数集合)。