Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Xinsheng Wang,Mingyan Yu.Weighted Self-Adaptive Threshold Wavelets for Interpolation Point Selection Used in Interconnect MOR[J].Journal of Harbin Institute Of Technology(New Series),2018,25(1):39-45.DOI:10.11916/j.issn.1005-9113.16119.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 15281times   downloaded 7979times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Weighted Self-Adaptive Threshold Wavelets for Interpolation Point Selection Used in Interconnect MOR
Author NameAffiliation
Xinsheng Wang School of Astronautics, Harbin Institute of Technology, Harbin 150001, China 
Mingyan Yu School of Astronautics, Harbin Institute of Technology, Harbin 150001, China 
Abstract:
As process technology development, model order reduction (MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on account of Krylov subspace techniques. The interpolation points are selected by Haar wavelet using weighted self-adaptive threshold methods dynamically. Through the analyses of different types of circuits in very large scale integration (VLSI), the results show that the method proposed in this paper can be more accurate and efficient than Krylov subspace method of multi-shift expansion point using Haar wavelet that are no weighted self-adaptive threshold application in interest frequency range, and more accurate than Krylov subspace method of multi-shift expansion point based on the uniform interpolation point.
Key words:  interconnect model order reduction  Haar wavelet transform  weighted threshold  multi shift Arnoldi  circuit synthesis
DOI:10.11916/j.issn.1005-9113.16119
Clc Number:
Fund:
Descriptions in Chinese:
  

基于加权自适应阈值小波的互连模型降阶插值点选择方法

王新胜,喻明艳

(哈尔滨工业大学 航天学院,哈尔滨 150001)

创新点说明:

提出一种加权自适应阈值Haar小波插值点选择的Krylov子空间模型降阶技术,其能动态的选择插值点的阈值,从而有效保证集成电路互连模型降阶的精度和速度。

研究目的:

有效解决大规模集成电路互连Krylov子空间模型降阶的精度与速度折中问题。

研究方法:

采用加权自适应阈值Haar小波插值点选择Krylov子空间模型降阶技术。

结果:

通过仿真分析大规模集成电路中电源和时钟树网络寄生电路系统,结果表明加权自适应阈值Haar小波插值点选择的Krylov子空间模型降阶技术相比传统的多偏移插值点选择的Krylov子空间模型降阶技术能有效提高降阶精度和降阶速度。

结论:

本文提出一种加权自适应阈值Haar小波插值点选择的Krylov子空间模型降阶技术,其能有效保证集成电路互连模型降阶的精度和速度

关键词:互连模型降阶;Haar小波变换;加权阈值;多偏移Arnoldi方法;电路综合

LINKS