Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Baogen Xu,Chunhua Li,Zhizhu Fan.On Locating Numbers of Graphs[J].Journal of Harbin Institute Of Technology(New Series),2018,25(1):93-96.DOI:10.11916/j.issn.1005-9113.16198.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 1252times   downloaded 1023times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
On Locating Numbers of Graphs
Author NameAffiliation
Baogen Xu Department of Mathematics, East China Jiaotong University, Nanchang, Jiangxi 330013, China 
Chunhua Li Department of Mathematics, East China Jiaotong University, Nanchang, Jiangxi 330013, China 
Zhizhu Fan Department of Mathematics, East China Jiaotong University, Nanchang, Jiangxi 330013, China 
Abstract:
LetG=(V,E) be a connected graph andW={w1,w2,…,wk} be an ordered subset ofV(G). For any vertexv∈V, the locating code ofv with respect toW is thekvectorCW(v)={d(v,w1),d(v,w2),…,d(v,wk)},W is said to be a locating set ofG if distinct vertices have the distinct locating code, and the locating number ofG is defined as:Loc(G)=min{|W|:W is a locating set of G}.We study the locating set and locating number of a graphG, obtain some bounds for the locating numbers of graphs, and determine the exact value ofLoc(G) for some special classes of graphs, such as cycles, wheels, completet partite graph and some Cartesian products of paths and cycles. In addition, we also prove thatLoc(T)≥Δ-1 holds for all treesT with maximum degreeΔ, and shows a treeT withLoc(T)=Δ-1.
Key words:  graph  locating code  locating set  locating number  Cartesian products O157.5
DOI:10.11916/j.issn.1005-9113.16198
Clc Number:O157.5
Fund:
Descriptions in Chinese:
  

关于图的定位数

徐保根,李春华,范自柱

(华东交通大学 数学系,江西 南昌 30013)

中文说明:

设G=(V,E)为一个连通图, W={w1,w2,…,wk} 为V(G)上的一个有序子集,对于每个点v∈V, v点相对于W的定位码为一个k-维向量 CW(v)={d(v,w1),d(v,w2),…,d(v,wk)},如果不同顶点具有不同的定位码,则称W为图G的一个定位集,图G的定位数定义为Loc(G)=min{|W|:W为图 G的一个定位集} 。

本文研究了图的定位集与定位数问题,获得了关于图的定位数的一些界限,对一些特殊图类给出其定位数的确切值,包括圈、轮图、完全t- 部图、路与圈的乘积图。此外也证明了Loc(T)≥Δ-1对一切最大度为Δ的树T均成立,并构造一棵满足Loc(T)=Δ-1的树T 。

关键词:图,定位码,定位集,定位数,笛卡尔积

LINKS