Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Yong Wang,Tianjiao Guo.Improved Ship Target Detection Accuracy in SAR Image Based on Modified CFAR Algorithm[J].Journal of Harbin Institute Of Technology(New Series),2018,25(2):18-23.DOI:10.11916/j.issn.1005-9113.17060.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 10041times   downloaded 7709times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Improved Ship Target Detection Accuracy in SAR Image Based on Modified CFAR Algorithm
Author NameAffiliation
Yong Wang Research Institute of Electronic Engineering Technology, Harbin Institute of Technology, Harbin 150001, China 
Tianjiao Guo Research Institute of Electronic Engineering Technology, Harbin Institute of Technology, Harbin 150001, China 
Abstract:
A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar (SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter, the strong reflection target, the sidelobe and so on. The conventional constant false alarm rate (CFAR) algorithm has some disadvantages, and it has not enough prior information about the size of the ships. Hence, it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem, and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.
Key words:  ship detection  Otsu algorithm  constant false alarm rate (CFAR)  opening operation
DOI:10.11916/j.issn.1005-9113.17060
Clc Number:TP753
Document Code::A
Fund:
Descriptions in Chinese:
  

基于修正CFAR算法的高精度SAR图像舰船目标检测

王勇,郭天骄

(哈尔滨工业大学 电子与信息工程学院,哈尔滨 150001)

创新点说明:

本文基于舰船目标实测数据SAR成像结果,提出一种新的二维SAR图像舰船目标检测算法,具体创新性可说明如下:

1)首先使用Otsu算法大致确定舰船目标的大小,进而自适应地确定CFAR滑动窗的尺寸,使算法更有普适性。

2)介绍了CFAR算法的改进形式,在提高运算速度的同时大大提升了检测效率。

3)所用的综合算法包含了形态学分割算法,解决了传统Otsu、CFAR算法不能处理多目标融合、角反射过强等问题,降低了漏警概率。

研究目的:

传统CFAR舰船检测算法效率低、无法根据图像分辨率和舰船目标大小来确定滑动窗大小,而且无法解决多目标融合等问题,基于此,本文设计一种综合算法可解决基于SAR图像的舰船目标检测问题。

研究方法:

1)对图像进行Otsu二值分割处理,量取分割后的每个区域的尺寸;

2)采用改进的CFAR算法,将积分运算简化为求和迭代运算,将阈值初始化为二倍窗内灰度值均值,窗大小根据Otsu算法分割后的每个区域的长宽来确定;

3)对经过CFAR算法后的图像进行形态学开运算处理。开运算算子采用一条线段,长度同样根据Otsu算法分割后的每个区域的长宽来确定。

结果:

1)说明了SAR图像进行Otsu处理后的图像特点,以及Otsu算法可以迅速获得舰船目标大小的优点。

2)给出了改进的CFAR算法的计算流程,此算法能够根据上一步估计的舰船目标大小来调整滑动窗大小,计算高效迅速,而且比较精确。

3)采用形态学开运算算法,并能根据Otsu算法分割后的每个区域大小来确定开运算算子,开运算处理后融合的多目标彼此分离,强角反射得到了去除,降低了漏警概率和虚警概率。

结论:

对于一幅含有舰船目标的SAR图像,可以通过Otsu、CFAR、开运算处理来进行舰船目标检测,降低漏警概率和虚警概率,提高算法的普适性和精确性。此外,通过对CFAR算法改进可大大提升运算效率。本文的研究结果对SAR舰船目标检测算法的实际应用奠定了良好的理论和实验基础。

关键词:舰船检测,Otsu算法,恒虚警检测,开运算

LINKS