Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Mao Wang,Tiantian Liang,Zhenhua Zhou.State Estimation for Non-linear Sampled-Data Descriptor Systems: A Robust Extended Kalman Filtering Approach[J].Journal of Harbin Institute Of Technology(New Series),2019,26(5):24-31.DOI:10.11916/j.issn.1005-9113.17143.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 1095times   downloaded 573times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
State Estimation for Non-linear Sampled-Data Descriptor Systems: A Robust Extended Kalman Filtering Approach
Author NameAffiliation
Mao Wang Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China 
Tiantian Liang Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China 
Zhenhua Zhou Changzhou Vocational Institute of Light Industry Technology, Changzhou 213000, Jiangsu,China 
Abstract:
This paper proposes a state estimation method for a class of norm-bounded non-linear sampled-data descriptor systems using the Kalman filtering method. The descriptor model is firstly discretized to obtain a discrete-time non-singular one. Then a model of robust extended Kalman filter is proposed for the state estimation based on the discretized non-linear non-singular system. As parameters are introduced in for transforming descriptor systems into non-singular ones, there exist uncertainties in the state of the systems. To solve this problem, an optimized upper-bound is proposed so that the convergence of the estimation error co-variance matrix is guaranteed in the paper. A simulating example is proposed to verify the validity of this method at last.
Key words:  sampled-data system, descriptor system, state estimation, Kalman filtering, REKF
DOI:10.11916/j.issn.1005-9113.17143
Clc Number:TP13
Fund:
Descriptions in Chinese:
  

非线性广义采样系统的状态估计—鲁棒扩展卡尔曼滤波方法

王茂1,梁天添1,周振华2

(1.哈尔滨工业大学 空间控制与惯性技术研究中心,哈尔滨 150001;

2.常州工业职业技术学院,江苏 常州 213000)

创新点说明:

1)引入参数并使用欧拉离散化方法将广义连续-离散系统转化为非奇异一般系统进行研究;

2)针对转化得来的非奇异系统中存在状态新增不确定性的问题,提出鲁棒上界,并根据该上界设计鲁棒扩展卡尔曼滤波器(REKF);

3)对设计的滤波器鲁棒性进行证明,证明该滤波器符合鲁棒性能指标。

研究目的、方法:

为解决一类范数有界非线性广义连续-离散系统的状态估计问题,在Matlab环境下,对REKF与EKF算法进行仿真对比

研究结果:

仿真结果表明,由REKF算法得到的状态估计误差小于EKF算法得到结果的20%,相较于EKF算法,REKF算法能更好估计该类广义系统的状态。

结论:

1)提出的REKF算法可有效解决系统非线性问题;

2)提出的鲁棒算法可有效降低非奇异等价系统中新增状态不确定性对状态估计影响;

3)相较于EKF算法,本文提出的REKF算法能够保证状态估计误差协方差矩阵有效收敛,从而能更好的估计该类广义连续-离散系统的状态。

关键词:采样系统;广义系统;状态估计;卡尔曼滤波;REKF算法

LINKS