Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People''s Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Xianshu Liu,Jie Ding,Nanqi Ren,Shuangyang Zhao,Luyan Zhang,Yan Li,Qingyue Tong.Degradation Pathway of Benzothiazole and Microbial Community Structure in Microbial Electrolysis Cells[J].Journal of Harbin Institute Of Technology(New Series),2019,26(6):1-7.DOI:10.11916/j.issn.1005-9113.18127.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 704times   downloaded 594times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Degradation Pathway of Benzothiazole and Microbial Community Structure in Microbial Electrolysis Cells
Author NameAffiliation
Xianshu Liu State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Jie Ding State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Nanqi Ren State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Shuangyang Zhao State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Luyan Zhang State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Yan Li State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Qingyue Tong State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China 
Abstract:
In this study, benzothiazole was entirely mineralized by an up-flow internal circulation microbial electrolysis reactor. The bioelectrochemical system was operated at ambient temperature under continuous-flow mode. The analysis of metabolite which was extracted by HPLC-MS from the bioreactor indicated that benzothiazole derivative (BTH) was firstly converted into 2-hydroxybenzothiazole in the microbial electrolysis cell (MEC) and then mineralized within three steps, i.e., the fracture of thiazole-ring through a series of oxidation and hydrolysis, the deamination and hydroxylation of 2-aminobenzenesulfonic acid, and the mineralization of various carboxylic acids to CO2 and H2O. Bacterial community analysis indicated that the applied electric field could selectively enrich certain species and the dominate bacteria on the electrodes belonged to Proteobacteria, Bacteroidetes, and Firmicutes. Results show that MEC can improve the degradation efficiency of BTH in wastewater, enable the microbiological reactor to satisfy the requirements of high loading rate, thereby fulfilling the scale-up of whole process in the future.
Key words:  benzothiazole  microbial electrolysis cell  intermediate product  biodegradation pathway  high-throughput sequencing
DOI:10.11916/j.issn.1005-9113.18127
Clc Number:X703
Fund:
Descriptions in Chinese:
  

MEC反应器中苯并噻唑的降解途径及微生物群落结构特征

刘先树,丁杰*,任南琪**,赵双阳,张麓岩,李燕,佟清越

(哈尔滨工业大学 城市水资源与水环境国家重点实验室,哈尔滨 150090)

创新点说明:

解析了MEC降解BTH的路径,同时提供了微生物学依据,为难降解废水的处理提供一条新的途径,并为MEC反应器的规模化应用提供理论基础。

研究目的:

课题组前期研究发现,MEC反应器用于处理废水中苯并噻唑(BTH)具有良好的脱毒能力,本文着重探讨BTH的降解路径以及MEC反应器中微生物群落结构的演替规律。

研究方法:

采用LC-MS/MS研究BTH降解过程中产生的中间产物,通过高通量测序解析不同反应器内的微生物群落结构。

研究结果:

采用上流式内循环微生物电辅助反应器(UICMER)处理废水中苯并噻唑(BTH),最终BTH在电场的刺激作用下,微生物将BTH转化为各种小分子羧酸,最终实现完全矿化。研究发现,BTH首先转化为二羟基苯并噻唑(OHBT),而后通过3个步骤完成矿化反应:首先噻唑环通过一系列水解和氧化作用开环,其次通过脱氨基和羟基化反应生成2-氨基苯磺酸,最终各种小分子羧酸被矿化为CO2和H2O。此外,电场的存在有助于电极表面选择性地富集某些特定微生物种群,电极上的主要细菌类型属于变形菌,拟杆菌和厚壁菌。

结论:

通过研究发现,MEC可有效提高废水中BTH的降解效率,使微生物反应器能够满足高负荷率的要求,可实现反应器经济高效运行。本研究可为MEC反应器的规模化应用提供理论基础。

关键词:苯并噻唑,微生物电辅助反应器,中间产物,降解路径,高通量测序

LINKS