Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Qipeng Li,Hongwei Liu,Zexian Liu.Fast First-Order Methods for Minimizing Convex Composite Functions[J].Journal of Harbin Institute Of Technology(New Series),2019,26(6):46-52.DOI:10.11916/j.issn.1005-9113.18033.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 1221times   downloaded 505times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Fast First-Order Methods for Minimizing Convex Composite Functions
Author NameAffiliation
Qipeng Li Department of Mathematics, Xidian University, Xi’an 710126, China 
Hongwei Liu Department of Mathematics, Xidian University, Xi’an 710126, China 
Zexian Liu Department of Mathematics, Xidian University, Xi’an 710126, China
School of Mathematics and Computer Science, Hezhou University, Hezhou 542899, Guangxi, China 
Abstract:
Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/Lk to be 1/L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.
Key words:  first-order method  iterative shrinkage-thresholding algorithm  convex programming  adaptive restart  composite functions.
DOI:10.11916/j.issn.1005-9113.18033
Clc Number:O221.2
Fund:
Descriptions in Chinese:
  

最小化凸合成函数的快速一阶方法

李启朋1,刘红卫1,刘泽显1,2

(1. 西安电子科技大学 数学与统计学院,西安 710126;

2. 贺州学院 数学与计算机学院,广西 贺州 542899)

摘要:

针对最小化凸合成函数,给出了两种加速一阶方法。首先提出在每次迭代开始时选择步长 的加速一阶方法,该方法不仅保持了快速迭代收缩阈值算法的计算简单性,而且也是一种非单调算法。另外,为避免非单调性,又提出一种加速单调一阶方法。本文从理论上证明了所提出的两种加速一阶方法具有较好的收敛速度,数值实验结果也表明两种算法的有效性。

关键词:一阶方法,快速迭代收缩阈值算法,凸规划,自适应重启,合成函数

LINKS