Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Xiaoyin Li,Hongwei Liu,Jiangli Cheng,Dongyao Zhang.Modified Subgradient Extragradient Method for Variational Inequality Problems and Fixed Point Problems[J].Journal of Harbin Institute Of Technology(New Series),2022,29(5):11-19.DOI:10.11916/j.issn.1005-9113.2021121.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 489times   downloaded 282times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Modified Subgradient Extragradient Method for Variational Inequality Problems and Fixed Point Problems
Author NameAffiliation
Xiaoyin Li School of Mathematics and Statistics, Xidian University, Xi’an 710126, China 
Hongwei Liu School of Mathematics and Statistics, Xidian University, Xi’an 710126, China 
Jiangli Cheng School of Mathematics and Statistics, Xidian University, Xi’an 710126, China 
Dongyao Zhang School of Mathematics and Statistics, Xidian University, Xi’an 710126, China 
Abstract:
Many approaches inquiring into variational inequality problems have been put forward, among which subgradient extragradient method is of great significance. A novel algorithm is presented in this article for resolving quasi-nonexpansive fixed point problem and pseudomonotone variational inequality problem in a real Hilbert interspace. In order to decrease the execution time and quicken the velocity of convergence, the proposed algorithm adopts an inertial technology. Moreover, the algorithm is by virtue of a non-monotonic step size rule to acquire strong convergence theorem without estimating the value of Lipschitz constant. Finally, numerical results on some problems authenticate that the algorithm has preferable efficiency than other algorithms.
Key words:  inertial method  fixed point  variational inequality  strong convergence  subgradient extragradient method
DOI:10.11916/j.issn.1005-9113.2021121
Clc Number:O224
Fund:
Descriptions in Chinese:
  

变分不等式问题和不动点问题的修正次梯度外梯度方法

李肖银,刘红卫,程江丽,张东耀

(西安电子科技大学,数学与统计学院,西安,710126)

中文说明:

本文提出一种求解实 Hilbert 空间中拟非扩张不动点问题和伪单调变分不等式问题的新算法。为减少运行时间和加快收敛速度,提出的算法采用了惯性技术。此外,该算法借助于非单调步长规则,在不估计利普希茨常数的情况下获得了强收敛定理。最后数值结果表明该算法比其它算法有更好的效率。

关键词:惯性方法,不动点,变分不等式,强收敛性,次梯度外梯度方法

LINKS