创新点说明:本文创新提出切削时间范围、刀具磨损状态、表面残余拉应力水平间的映射关系,以及刀具磨损状态、表面残余应力层、表面变质层间的映射关系。一方面,通过控制刀具的切削时间范围,找到一种新的表面完整性预测与控制策略;另一方面,从工件表面完整性的角度提出一种新的刀具磨损评价方法。
研究目的:
切削加工是一个动态过程,在切削条件一定时,刀具磨损问题会引起工件表面完整性的差异,这种表面完整性的不一致性严重影响了航空发动机关键结构件的疲劳性能。本文研究旨在通过控制刀具磨损状态,实现对工件表面完整性的一致性控制,并从工件的角度实现对刀具磨损状态的评价。
研究方法:
(1) 在、、的切削参数下进行车削实验。以切削距离55mm (切削时间约7.37min)为一个切削单元,使用6个全新的涂层硬质合金车刀片分别进行1~6个切削单元下的切削实验,保留所有刀片和已加工表面以进行检测分析;
(2) 获取6个刀具的磨损状态,包括前刀面磨损、后刀面磨损,得到刀具磨损曲线、磨损率以及相邻两个切削单元间的磨损变化率;刀具形貌和后刀面磨损量VB的检测分析使用Dino-Lite AD4113T数码显微镜及其配套软件进行。
(3) 对6个刀具在各自最后一个切削单元下获得的已加工表面进行残余应力检测,得到表面残余应力沿深度方向的分布规律;残余应力的检测分析使用PRISM激光小孔电子散斑干涉残余应力分析仪及其配套软件进行。
(4) 对6个刀具在各自最后一个切削单元下获得的已加工表面进行制样与变质层检测,得到变质层形态及厚度的变化规律;变质层的检测分析使用OLYMPUS OLS4100共聚焦显微镜及其配套软件进行。
(5) 对6个刀具在各自最后一个切削单元下获得的已加工表面进行表面粗糙度检测,得到表面粗糙度的变化规律;表面粗糙度的检测分析使用TIME 3220移动式粗糙度测量仪及其配套软件进行。
研究结果:
(1) 刀具处于初期磨损的切削时间约为6min,在切削时间30min左右时发生剧烈磨损,但在45min以前磨损量增长较为稳定。根据不同切削时间下磨损量的变化率对刀具磨损范围进行划分,获得五种刀具磨损状态:S1 (0-15min);S2 (15-22min);S3 (22-30min);S4 (30-37min);S5 (37min以后)。由于初期磨损时间较短,本文将其归入S1状态下,不作单独考虑。
(2) 不同刀具磨损状态下获得的加工表面残余应力虽不尽相同,但在深度方向上整体呈现出明显的“勺”型分布趋势,轴向和周向的应力曲线基本吻合。用拉应力峰值来表征残余应力水平,发现随着刀具磨损量的增加,残余应力水平与刀具磨损量的变化率存在一致性规律。
(3) 已加工表面10以内存在加工变质层,变质层内材料沿周向产生拉伸变形。随着刀具磨损量的增加,加工表面变质层的厚度与周向表面残余应力层的厚度存在一致性规律。
(4) 表面粗糙度是评价加工表面完整性的重要指标。随着刀具磨损量的不断增加,表面粗糙度Ra略有增大但增幅较小,在S5状态下粗糙度激增,表明刀具已经不适合继续进行切削加工。刀具磨损对粗糙度指标Rz的影响更大。
结论:
本文使用涂层硬质合金刀具,在、、的切削参数下,对镍基高温合金GH4169车削过程中的刀具磨损与表面影响层状况进行了研究。主要得到以下结论:
(1) 刀具总的切削时间应控制在37min以内,在6min左右时迅速进入正常磨损阶段,在30分钟左右时进入剧烈磨损阶段。按照刀具磨损量的变化率,可分为五种刀具磨损状态:S1 (0-15min);S2 (15-22min);S3 (22-30min);S4 (30-37min);S5 (37min以后)。
(2) 加工表面影响层的性质受副后刀面处的刀尖磨损影响严重。在连续切削过程中,由于刀具磨损的存在,刀尖位置发生偏移,实际切削深度减小,已加工表面和刀具副后刀面间的接触状态发生变化。
(3) 以刀具磨损状态为纽带,形成切削时间与残余应力水平间的映射,可实现对表面残余应力的预测。0-15min:周向450MPa,轴向330MPa;15-22min:周向360MPa,轴向120MPa;22-30min:周向560MPa,轴向300MPa;30-37min:周向100MPa,轴向60MPa;37min以上:周向320MPa,轴向470MPa。当工件残余应力水平低于400MPa时,可认为对应的刀具切削状态良好。
(4) 在15-22min和30-37min的刀具切削时间范围内,能够获得表面影响层状态较为一致的已加工表面,因此该处于该时间范围内的刀具应被用于关键零件结构的加工中。在切削时间37min以后,已加工表面粗糙度剧增,此时刀具不再适合继续用于加工,需及时更换。
关键词:刀具磨损,残余应力,加工影响层,表面完整性,高温合金