Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Xunsheng Ji,Dazhi Wang,Kun Jiang.Two-Dimensional Images of Current and Active Power Signals for Elevator Condition Recognition[J].Journal of Harbin Institute Of Technology(New Series),2023,30(2):48-60.DOI:10.11916/j.issn.1005-9113.21062.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 2614times   downloaded 2725times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Two-Dimensional Images of Current and Active Power Signals for Elevator Condition Recognition
Author NameAffiliation
Xunsheng Ji School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China 
Dazhi Wang School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China 
Kun Jiang School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China 
Abstract:
In this paper, an improved two-dimensional convolution neural network (2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.
Key words:  elevator condition  current  active power  two-dimensional convolution network (2DCNN)
DOI:10.11916/j.issn.1005-9113.21062
Clc Number:TU857
Fund:
Descriptions in Chinese:
  

电流与有功功率二维图像的电梯状态识别

吉训生,王大智,江昆

(江南大学 物联网工程学院,江苏 无锡214122)

摘要:本文基于电梯时间序列数据在二维图像中的分布特征,提出一种改进的二维卷积神经网络(2DCNN)来监测和分析电梯的健康状况。收集来自电梯曳引机的电流和有效功率信号以生成灰度二值图像,基于改进的二维卷积神经网络从图像中提取深层特征进行分类,以识别电梯的工作状态。此外,提出振荡判据来描述和分析有功功率振荡。电流和有功功率用于同步描述电梯的工作状态,可以解释电梯数据的同现状态和电位关系。基于时间序列局部特征的改进集成,所提出的2DCNN的识别准确率为97.78%,优于一维卷积神经网络。本研究可以提高电梯维保人员的实时监控和可视化分析能力,提高工作效率。

关键词:电梯工况,电流,有功功率,二维卷积神经网络(2D-CNN)

LINKS