期刊检索

  • 2024年第32卷
  • 2023年第31卷
  • 2022年第30卷
  • 2021年第29卷
  • 2020年第28卷
  • 2019年第27卷
  • 2018年第26卷
  • 2017年第25卷
  • 2016年第24卷
  • 2015年第23卷
  • 2014年第22卷
  • 2013年第21卷
  • 2012年第20卷
  • 2011年第19卷
  • 2010年第18卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 中国材料研究学会
哈尔滨工业大学
主编 苑世剑 国际刊号ISSN 1005-0299 国内刊号CN 23-1345/TB

期刊网站二维码
微信公众号二维码
引用本文:何文武,孙述利,刘建生,郭会光.Mn18Cr18N护环钢静态再结晶组织及模型[J].材料科学与工艺,2014,22(6):17-22.DOI:10.11951/j.issn.1005-0299.20140604.
HE Wenwu,SUN Shuli,LIU Jiansheng,GUO Huiguang.Static recrystallization microstructure and model of Mn18Cr18N retaining rings steel[J].Materials Science and Technology,2014,22(6):17-22.DOI:10.11951/j.issn.1005-0299.20140604.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1492次   下载 1015 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Mn18Cr18N护环钢静态再结晶组织及模型
何文武,孙述利,刘建生,郭会光
(太原科技大学 材料科学与工程学院,太原 030024)
摘要:
在Gleeble-1500D热模拟机上,采用双道次热压缩试验研究Mn18Cr18N护环钢高温变形后不同停留时间内的静态软化行为,分析热变形温度、应变速率、变形程度以及初始奥氏体晶粒对静态再结晶行为的影响.通过应力补偿法计算静态再结晶软化率,并结合金相组织作了修正.建立其静态再结晶动力学模型,获得静态再结晶激活能249.3 kJ/mol.研究表明:Mn18Cr18N钢静态再结晶软化曲线呈“S”形,符合Avrami方程.静态再结晶体积分数随着停留时间延长而增加,热变形温度越高,静态再结晶分数越大,而在较低温度和较小变形程度时,孕育时间较长,主要发生静态回复,将静态再结晶动力学模型的预测结果与实测值进行比较,二者吻合较好,为护环钢后续热镦粗工艺模拟提供更为详尽的模型.
关键词:  Mn18Cr18N护环钢  静态再结晶  激活能  动力学模型
DOI:10.11951/j.issn.1005-0299.20140604
分类号:TG146.2
基金项目:国家自然科学基金资助项目(51275330);山西省研究生优秀创新项目(20081083;20081084);太原科技大学博士启动基金项目(20122012;20122013);山西省自然基金项目(2014011015-4).
Static recrystallization microstructure and model of Mn18Cr18N retaining rings steel
HE Wenwu, SUN Shuli, LIU Jiansheng, GUO Huiguang
(School of Material Science and Engineering,Taiyuan University of Science and Technology, Taiyuan 030024,China)
Abstract:
The static recrystallization softening behavior by two-pass compression test of Mn18Cr18N retaining ring steel were investigated on a Gleeble 1500D thermo-simulation machine. Effect of deformation temperature, strain rate, deformation degree and initial austenite grain size on the static recrystallization microstructure was analyzed. The softening fraction of static recrystallization was determined using the 2% stress offset method and it was modified with the metallographical observation. Then static recrystallization kinetic model was established and the activation energy for static recrystallization is determined as 249.3 kJ/mol. The results show that the shape of static recrystallization softening curves of Mn18Cr18N steel is sigmoidal and obeys the Avrami law. The volume fraction of static recrystallization increases with the longer holding time, and the higher the hot deformation temperature is, the higher the volume fraction of static recrystallization also becomes. At the lower temperature and smaller deformation degree, the incubation time is longer and static recovery occurs. There is a good agreement between the predicted value and experimental results, which provides a reliable model of hot upsetting simulation for retaining ring steel.
Key words:  Mn18Cr18N retaining rings steel  static recrystallization  activation energy  kinetic model

友情链接LINKS