引用本文: | 刘渊,闫洪,王志伟.流变成形压力对Al2Y/AZ91镁基复合材料摩擦磨损行为的影响[J].材料科学与工艺,2016,24(2):29-35.DOI:10.11951/j.issn.1005-0299.20160202. |
| LIU Yuan,YAN Hong,WANG Zhiwei.Effects of rheological forming pressure on friction and wear characteristics of Al2Y/AZ91 magnesium matrix composites[J].Materials Science and Technology,2016,24(2):29-35.DOI:10.11951/j.issn.1005-0299.20160202. |
|
摘要: |
采用销盘式摩擦副,在转速为100 r/min干摩擦条件下,结合OM、SEM结果,考察了不同载荷与成形压力对流变成形Al2Y/AZ91镁基复合材料(质量分数2%Y)摩擦磨损性能的影响,并探究耐磨性与材料显微组织、力学性能之间的关系.研究表明:在相同的实验载荷下,随着制备复合材料流变成形压力的增加,材料的磨损质量和摩擦系数减少,本实验条件下最大成形压力为100 MPa时磨损量和摩擦系数最小,摩擦磨损性能较佳;对于在相同成形压力下制备的镁基复合材料,磨损质量随着载荷的提升而增大,而摩擦系数有所降低.当载荷较小时,Al2Y/AZ91镁基复合材料的磨损机制以磨粒磨损为主;随着载荷的增大,磨损机制逐步发生转变;当载荷较大时,磨损机制以剥层磨损为主.
|
关键词: 流变成形 Al2Y/AZ91镁基复合材料 摩擦磨损 载荷 磨损机制 |
DOI:10.11951/j.issn.1005-0299.20160202 |
分类号:TG135.6 |
文献标识码:A |
基金项目:国家自然科学基金资助项目(51364035). |
|
Effects of rheological forming pressure on friction and wear characteristics of Al2Y/AZ91 magnesium matrix composites |
LIU Yuan1,2,YAN Hong1,2,WANG Zhiwei1,2
|
(1.Department of Materials Processing Engineering, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031,China;2.Key Laboratory of Light Alloy Preparation & Processing in Nanchang City, Nanchang 330031,China)
|
Abstract: |
The influence of different rheological forming pressure and loading on the friction and wear characteristics of Al2Y/AZ91 magnesium matrix composites were studied using a pin-on-disc configuration with 100 r/min and 10 min. The microstrure was observed using OM and SEM under dry sliding friction conditions. The relationship between the wear resistance and the microstructure was explored, which lays a foundation for broadening the application field of magnesium alloy.The results showed that with the increase of rheological forming pressure, the wear loss weight and friction coefficient reduced under the same load. The wear resistance of magnesium matrix composites with addition of 2wt% Y is the best state at rheological forming pressure of 100 MPa. Under the same rheological forming pressure, the wear loss weight increased and the friction coefficient decreased with the increase of load. When the load is small, the main wear mechanism is abrasive wear. The wear mechanism gradually changed to delamination wear with the increase of load.
|
Key words: rheological forming Al2Y/AZ91 magnesium matrix composites friction and wear loading wear mechanism |