引用本文: | 张银,康敏,傅秀清,李恒征,刘运通.Ni-Co-P-BN(h)-Al2O3二元纳米复合镀层表面组织结构及耐磨性研究[J].材料科学与工艺,2019,27(6):55-66.DOI:10.11951/j.issn.1005-0299.20180289. |
| ZHANG Yin,KANG Min,FU Xiuqing,LI Hengzheng,LIU Yuntong.Surface structure and wear resistance of Ni-Co-P-BN(h)- Al2O3 binary nano composite coatings[J].Materials Science and Technology,2019,27(6):55-66.DOI:10.11951/j.issn.1005-0299.20180289. |
|
摘要: |
为改善材料表面耐磨性能,采用电沉积法在不同纳米颗粒质量浓度及其混杂配比下制备了Ni-Co-P-BN(h)、Ni-Co-P-Al2O3和Ni-Co-P-BN(h)-Al2O3的3种纳米复合镀层,通过扫描电镜、能谱仪、X射线衍射仪、显微硬度仪、摩擦磨损仪及激光共聚焦显微镜,对镀层的表面组织结构与耐磨性能进行了研究.结果表明:不同纳米颗粒质量浓度及其混杂配比对纳米复合镀层表面组织结构有重要影响,纳米复合镀层表面呈现出典型的包状结构,混杂配比后出现明显纳米Al2O3的衍射峰;与Ni-Co-P-BN(h)和Ni-Co-P-Al2O3镀层相比,Ni-Co-P-BN(h)-Al2O3二元纳米复合镀层的平均显微硬度更大,达到753.6 HV0.2;摩擦磨损试验中对摩件是直径4 mm的GCr15合金球,在施加载荷3.2 N、转速500 r/min、摩擦时间30 min的磨损条件下,二元纳米复合镀层磨损量最小为9.2 mg/h.纳米BN(h)和Al2O3在电沉积加工过程中充分发挥了二元纳米粒子协同生长的优势,使得Ni-Co-P-BN(h)-Al2O3二元纳米复合镀层具有更好的耐磨性能. |
关键词: 电沉积 Ni-Co-P-BN(h)-Al2O3二元纳米复合镀层 表面组织结构 显微硬度 耐磨性 |
DOI:10.11951/j.issn.1005-0299.20180289 |
分类号:TG174.4 |
文献标识码:A |
基金项目:江苏省科技厅苏北科技发展计划-科技富民强县项目(BN2014019). |
|
Surface structure and wear resistance of Ni-Co-P-BN(h)- Al2O3 binary nano composite coatings |
ZHANG Yin1, KANG Min1,2, FU Xiuqing1,2, LI Hengzheng1, LIU Yuntong1
|
(1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China; 2. Key Laboratory of Intelligence Agricultural Equipment of Jiangsu Province (Nanjing Agricultural University), Nanjing 210031, China) [HJ0.8mm]
|
Abstract: |
In order to improve the wear resistance of the material surface, three kinds of nanocomposite coatings, Ni-Co-P-BN(h), Ni-Co-P-Al2O3, and Ni-Co-P-BN(h)-Al2O3, were fabricated by electrodeposition at different nano particle concentrations and mix proportions. The surface structure and wear resistance of the coatings were analyzed by SEM, EDS, XRD, microhardness tester, friction abrasion tester, and confocal laser scanning microscope, respectively. Results show that nano particle concentration and mix proportion had influence on the surface structure. The surface of the nano composite coating exhibited typical parcel structure, and the diffraction peaks of nano Al2O3 appeared after mixed proportion. Compared with Ni-Co-P-BN(h) and Ni-Co-P-Al2O3 coatings, the average microhardness of the Ni-Co-P-BN(h)-Al2O3 binary nano composite coating was higher, which was up to 753.6 HV0.2. The friction element of the friction-wear test was a GCr15 alloy ball with a diameter of 4 mm. Under the condition of 3.2 N loading, rotational speed of 500 r/min, and friction time of 30 min, the minimum wear loss of binary nano composite coating was 9.2 mg/h. The nano particles BN(h) and Al2O3 deposited in the coating fully utilized the synergistic growth advantage of the binary nanoparticles, improving the wear resistance of the Ni-Co-P-BN(h)-Al2O3 binary nano composite coating. |
Key words: electrodeposition Ni-Co-P-BN(h)-Al2O3 binary nano composite coating surface structure microhardness wear resistance |