引用本文: | 宋晓丽,李字明,闫康凯,李敏,陈媛媛,刘宗俊,王铀.多变色不可逆示温材料制备及其智能电网应用[J].材料科学与工艺,2021,29(1):9-16.DOI:10.11951/j.issn.1005-0299.20190327. |
| SONG Xiaoli,LI Ziming,YAN Kangkai,LI Min,CHEN Yuanyuan,LIU Zongjun,WANG You.Preparation of multi-color irreversible thermochromic coatings and its application for smart grids[J].Materials Science and Technology,2021,29(1):9-16.DOI:10.11951/j.issn.1005-0299.20190327. |
|
|
|
本文已被:浏览 474次 下载 847次 |
码上扫一扫! |
|
多变色不可逆示温材料制备及其智能电网应用 |
宋晓丽1, 李字明2, 闫康凯1, 李敏1,陈媛媛1,刘宗俊3,王铀1
|
(1.哈尔滨工业大学 材料科学与工程学院,哈尔滨 150001;2.国网黑龙江省电力有限公司,哈尔滨150090;3.哈尔滨工业大学 化工与化学学院,哈尔滨 150001)
|
|
摘要: |
在智能社会初露端倪的背景下,电力系统过热故障智能排查与监测已成为未来智能电网亟待解决的问题。本文制备了一种多变色示温材料,利用材料随温度发生多种颜色变化的特性,实现对雷击、短路等过热故障点的快速定位与过热温度记录。研究证实该材料在较宽温度范围内(300~900 ℃),可呈现7种不同的颜色,颜色变化响应时间为5 s,满足电力系统应用要求。为便于温度采集,本文通过色差仪提取不同温度下涂层颜色的RGB数值,构建了标准色-温空间曲线,在此基础上利用最小二乘法实现对温度的自动识别。最后对材料800 ℃下变色机理进行了初探,结果显示在此温度下材料的变色主要由硫酸钴的分解及其产物与氧化铋的反应引起。 |
关键词: 示温涂料 多变色不可逆 过热故障检测 色温关系 智能电网 |
DOI:10.11951/j.issn.1005-0299.20190327 |
分类号:TQ637.5 |
文献标识码:A |
基金项目: |
|
Preparation of multi-color irreversible thermochromic coatings and its application for smart grids |
SONG Xiaoli1, LI Ziming2, YAN Kangkai1, LI Min1, CHEN Yuanyuan1, LIU Zongjun3, WANG You1
|
(1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. State Grid Heilongjiang Electric Power Co., LTD., Harbin 150090, China; 3. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)
|
Abstract: |
Under the background of the emergence of intelligent society, the intelligent investigation and monitoring of overheating fault in power system has become an urgent problem to be solved in the future smart power grid. In this paper, a kind of multi-color temperature indicating material is prepared, which can quickly locate and record the temperature of overheat fault points such as lightning strike and short circuit by the property of multiple thermal discoloration of the material. The study confirms that this material can present seven different color changes in a wide range of temperature (300~900 ℃), and the color change response time is 5 s, which meets the application requirements of power system. In order to facilitate temperature acquisition, RGB values of coating colors at different temperatures were extracted by chromatic aberration meter, and standard color-temperature spatial curve was constructed. On this basis, the least square method was used to realize automatic temperature recognition. Finally, the mechanism of discoloration at 800 ℃ was studied. The results showed that the discoloration was mainly caused by the decomposition of cobalt sulfate and the reaction of its product with bismuth oxide. |
Key words: temperature-sensitive paints multi-color discoloration overheat fault detection color-temperature relationship smart grid |
|
|
|
|