期刊检索

  • 2024年第32卷
  • 2023年第31卷
  • 2022年第30卷
  • 2021年第29卷
  • 2020年第28卷
  • 2019年第27卷
  • 2018年第26卷
  • 2017年第25卷
  • 2016年第24卷
  • 2015年第23卷
  • 2014年第22卷
  • 2013年第21卷
  • 2012年第20卷
  • 2011年第19卷
  • 2010年第18卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 中国材料研究学会
哈尔滨工业大学
主编 苑世剑 国际刊号ISSN 1005-0299 国内刊号CN 23-1345/TB

期刊网站二维码
微信公众号二维码
引用本文:徐丽,王博,韩福盛,赵广耀,刘双宇,盛鹏,李慧,白会涛,陈新,宁晓辉,何成.新型液态金属电池正极材料的探索研究[J].材料科学与工艺,2021,29(2):20-26.DOI:10.11951/j.issn.1005-0299.20190276.
XU Li,WANG Bo,HAN Fusheng,ZHAO Guangyao,LIU Shuangyu,SHENG Peng,LI Hui,BAI Huitao,CHEN Xin,NING Xiaohui,HE Cheng.Research on the new cathode material of liquid metal battery[J].Materials Science and Technology,2021,29(2):20-26.DOI:10.11951/j.issn.1005-0299.20190276.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 534次   下载 1106 本文二维码信息
码上扫一扫!
分享到: 微信 更多
新型液态金属电池正极材料的探索研究
徐丽1,王博1,韩福盛2,赵广耀1,刘双宇1,盛鹏1,李慧1,白会涛1,陈新1,宁晓辉2,何成2
(1.先进输电技术国家重点实验室(全球能源互联网有限公司),北京102211; 2.金属材料强度国家重点实验室(西安交通大学),西安 710049)
摘要:
利用液态金属电池储能是近年来发展起来的一种新型电化学储能技术,具有成本低、寿命长等优点,在大型储能领域具有广阔的应用前景。传统单一组分的正极材料面临熔点高、电压低等问题,而合金材料则给液态金属电池正极材料提供了新的可能。本文通过分子动力学方法计算多种适用于液态金属电池正极材料的金属和合金材料(Bi、Sb、Te、Sn、Pb),经过多尺度计算模拟,首先找到了30种二元合金和三元合金,分析这些合金材料的形成能,发现均为负值,理论上说明这30种二元合金和三元合金均可以稳定存在。而后,筛选出具有较低熔点(<500 ℃)的正极合金,分别是SnSb、HgTl、InBi、PbSb、HgIn、InTe、GaSb、AlSb、CdSnSb2、ZnSb。进一步分析合金正极材料的态密度,选出7种离子传输能力较强的正极合金:PbSb、HgIn、CdSnSb2、ZnSnSb2、InTe、SnSb和SnTl4Te3,模拟计算其以锂为负极情况下的开路电压,结果表明,以SnSb为正极材料时,开路电压可达0.65 V。
关键词:  电化学储能  液态金属电池  正极材料  开路电压  分子动力学
DOI:10.11951/j.issn.1005-0299.20190276
分类号:TK9
文献标识码:A
基金项目:国家自然科学基金资助项目(51471124,U1766216);国家重点研发计划项目 (2018YFB0905600);陕西省自然科学基金资助项目(2019JM-189);中国国家电网科技项目(SGGR0000DWJS1800781).
Research on the new cathode material of liquid metal battery
XU Li1, WANG Bo1, HAN Fusheng2, ZHAO Guangyao1, LIU Shuangyu1, SHENG Peng1, LI Hui1, BAI Huitao1, CHEN Xin1, NING Xiaohui2, HE Cheng2
(1.State Key Laboratory of Advanced Power Transmission Technology (Global Energy Internet Co., Ltd.), Beijing 102211, China; 2.State Key Laboratory for Mechanical Behavior of Materials (Xi'an Jiaotong University),Xi'an 710049, China)
Abstract:
The use of liquid metal battery energy storage is a new type of electrochemical energy storage technology developed in recent years. It has the advantages of low cost and long life, and has broad application prospects in the field of large-scale energy storage. Conventional single-component cathode materials face problems such as high melting point and low voltage, while alloy materials offer new possibilities for liquid metal battery cathode materials. In this paper, molecular dynamics method was used to calculate a variety of metal and alloy materials (Bi, Sb, Te, Sn, Pb) suitable for liquid metal battery cathode materials. After multi-scale calculation and simulation, 30 binary and tenary alloys were firstly selected.Analysis of the formation energies of these alloy materials show that they were all negative. Theoretically, these 30 binary and ternary alloys can exist stably. Then, the positive electrode alloys with lower melting points (<500 ℃) were screened out, which were SnSb, HgTl, InBi, PbSb, HgIn, InTe, GaSb, AlSb, CdSnSb2 and ZnSb.Finally, after further analysis of the state density of the alloy material, seven kinds of positive electrode alloys with strong ion transport ability were selected, namely,PbSb, HgIn, CdSnSb2, ZnSnSb2, InTe and SnTl4Te3. The open circuit voltages of the seven materials with lithium as the negative electrode were calculated.
Key words:  electrochemical energy storage  liquid metal battery  cathode material  open circuit voltages  molecular dynamics

友情链接LINKS