引用本文: | 李永琴,梁春雨,高学凯.植物油再生沥青流变特性及机理分析[J].材料科学与工艺,2023,31(6):44-50.DOI:10.11951/j.issn.1005-0299.20220404. |
| LI Yongqin,LIANG Chunyu,GAO Xuekai.Analysis of rheological characteristics and mechanism of vegetable oil regenerated asphalt[J].Materials Science and Technology,2023,31(6):44-50.DOI:10.11951/j.issn.1005-0299.20220404. |
|
摘要: |
针对传统石化油基再生剂价格高昂且性能不稳定等问题,本文以棕榈油为基础油分,添加增塑剂、抗老化剂制备了一种新型再生剂,分别采用动态剪切流变实验、小梁弯曲流变实验和傅里叶红外光谱实验,分析了该再生剂对老化沥青流变特性的影响以及对老化沥青的再生机理,并进一步利用再生混合料综合路用性能实验验证了该再生剂在工程应用的可行性。研究表明:随着再生剂掺量的增加,沥青高温性能减弱而低温抗裂性提升,建议根据再生混合料应用层位、交通荷载、气候条件等因素,综合考虑混合料性能需求,确定适宜的再生剂掺量。CA函数可以用于构建再生沥青复数模量与相位角主曲线,随着再生剂掺量的增加,再生沥青复数模量及位移因子降低而相位角增大,再生剂的掺入改善了沥青的感温性。Burgers模型能够定量分析再生沥青粘弹性变化,随着再生剂含量的增大,沥青的松弛时间缩短而延迟时间延长,再生剂提高了沥青的黏性比例。该植物油再生剂与老化沥青混合未发生化学反应,主要通过补充轻质油分并调节组分比例以恢复老化沥青的流变性能,且再生沥青混合料具有良好的高温抗车辙、低温抗开裂及抗水损坏能力,工程应用前景广阔。 |
关键词: 道路工程 植物油 再生剂 流变特性 再生机理 路用性能 |
DOI:10.11951/j.issn.1005-0299.20220404 |
分类号:U414 |
文献标识码:A |
基金项目:国家自然科学基金资助项目(52008235);山西交控科技项目(20-JKKJ-6). |
|
Analysis of rheological characteristics and mechanism of vegetable oil regenerated asphalt |
LI Yongqin1, LIANG Chunyu2, GAO Xuekai3
|
(1.Shanxi Vocational University of Engineering and Scientific, Jinzhong 030619,China;2.College of Transportation, Jilin University, Changchun 130015, China; 3. Key Laboratory of Highway Construction and Maintenance Technology of Ministry of Transport in Loess Region, Taiyuan 030032,China)
|
Abstract: |
To resolve the problem of high price and unstable performance of traditional petrochemical oil-based regenerants, a new regenerant was prepared by adding plasticizer and anti-aging agent to palm oil-based oil. The dynamic shear rheological test, trabecular bending rheological test and Fourier infrared spectroscopy test were conducted respectively to analyze the influence of the regenerator on rheological properties of the aged asphalt, and the regeneration mechanism of the aged asphalt. Additionally, the feasibility of the regenerant in engineering application was verified by the road performance of the reclaimed asphalt mixture. The results show that with the increase of regenerant content, the high temperature performance of asphalt decreases while the low temperature crack resistance increases. It is suggested to determine the appropriate regenerant content according to the application layer of regenerant, traffic load, climate conditions and other factors, considering the performance requirements of the mixture. CA function can be used to construct the main curve of complex modulus and phase angle of recycled asphalt. With the increase of regenerant content, the complex modulus and displacement factor of recycled asphalt decrease while the phase angle increases. The Burgers model can quantitatively analyze the change of viscoelasticity of recycled asphalt. With the increase of the content of regenerated agent, the relaxation time of asphalt is shortened and the delay time is extended, and the regenerated agent can improve the viscosity ratio of asphalt. There is no chemical reaction between the vegetable oil regenerating agent and the aged asphalt, and the rheological property of the aged asphalt can be restored mainly by supplementing the light oil and adjusting the proportion of components. Moreover, the reclaimed asphalt mixture exhibits desirable resistance to rutting at high temperature, cracking and water damage at low temperature, thus presenting a broad prospect of engineering application. |
Key words: road engineering vegetable oil regeneration agent rheological properties regeneration mechanism road performance |