引用本文: | 郭天阳,罗小兵,项重辰,丁汉林,柴锋,潘涛.两相区淬火温度对Ni-Cr-Mo-V系高强船体钢组织及性能的影响[J].材料科学与工艺,2024,32(3):10-17.DOI:10.11951/j.issn.1005-0299.20220445. |
| GUO Tianyang,LUO Xiaobing,XIANG Chongchen,DING Hanlin,CHAI Feng,PAN Tao.Effect of intercritical quenching temperature on micro-structure and properties of Ni-Cr-Mo-V high strength hull steel[J].Materials Science and Technology,2024,32(3):10-17.DOI:10.11951/j.issn.1005-0299.20220445. |
|
|
|
本文已被:浏览 2043次 下载 2842次 |
码上扫一扫! |
|
两相区淬火温度对Ni-Cr-Mo-V系高强船体钢组织及性能的影响 |
郭天阳1,2,罗小兵2,项重辰1,丁汉林1,柴锋2,潘涛2
|
(1.苏州大学 沙钢钢铁学院,江苏 苏州 215021;2.钢铁研究总院 工程用钢研究所,北京 100081)
|
|
摘要: |
为改善高强船体钢高屈强比、回火区间窄的问题,研究了两相区二次淬火温度对Ni-Cr-Mo-V系高强船体钢组织及性能的影响。通过改变二次淬火温度,研究实验钢冲击拉伸性能和显微组织的变化规律,并通过OM、TEM、XRD衍射等方法进行表征。结果表明,在淬火温度区间内,材料的性能表现出两种变化趋势。当淬火温度在640~700 ℃时,实验钢的强度随着二次淬火温度的上升而增加,而韧性下降。在该淬火温度范围内,实验钢的机械性能由铁素体+马氏体的双相组织和逆转变奥氏体的含量决定。随着二次淬火温度的上升,双相组织中铁素体的比例从40%降至10%,逆转变奥氏体的含量从11%下降至1%。当二次淬火温度从700 ℃增加到780 ℃时,实验钢的强度和韧性变化不明显,原因是二次淬火的温度已经超过了A3温度,实验钢组织转变为单一的马氏体组织,奥氏体晶粒尺寸变化不大(7.3~8.5 μm)。综上,在680 ℃下进行两相区二次淬火可以获得最佳的强度和韧性匹配。 |
关键词: 两相区淬火 强度 韧性 屈强比 逆转变奥氏体 |
DOI:10.11951/j.issn.1005-0299.20220445 |
分类号:TG113.1 TG113.2 |
文献标识码:A |
基金项目:中央高校基本科研业务费专项资金资助(WK2090050018). |
|
Effect of intercritical quenching temperature on micro-structure and properties of Ni-Cr-Mo-V high strength hull steel |
GUO Tianyang1,2, LUO Xiaobing2, XIANG Chongchen1, DING Hanlin1, CHAI Feng2, PAN Tao2
|
(1.School of Iron and Steel, Soochow University, Suzhou 215021, China; 2.Institute for Structural Steel, Central Iron and Steel Research Institute, Beijing 100081,China)
|
Abstract: |
To improve the high yield ratio and narrow tempering range of high strength hull steel, the effect of intercritical quenching temperature on the microstructure and properties of Ni-Cr-Mo-V steel was investigated. The impact tensile properties and microstructure of the experimental steel were examined by changing the secondary quenching temperature, and characterized by MO, TEM, X-ray diffraction and other methods. The results show that in quenching temperature range, the properties of the material show two phenomena: when the quenching temperature between 640 to 700 ℃, the strength of steel increases with the increase of intercritical temperature, and the toughness decreases. In this quenching temperature range, the mechanical properties of the material are determined by the composition of F&M microstructure and the formation of reversed austenite. With the increase of the intercritical quenching temperature, the proportion of F in the dual phase structure decreases from 40% to 10% and the content of reversed austenite reduces from 11% to 1%. When the quenching temperature varies from 700 to 780 ℃, the change of strength and toughness of test material is not obvious. The main reason is that the intercritical quenching temperature exceeds the A3 temperature, the steel transforms into a single martensite structure after cooling, and the change of austenite grain size is not significant, specifically between 7.3~8.5 μm.The results show that the best match of strength and toughness can be achieved by intercritical quenching at 680 ℃. |
Key words: intercritical quenching strength toughness yield ratio reversed austenite |
|
|
|
|