创新点说明:(1) 考虑自转旋翼机跳飞时旋翼桨叶的总距突增瞬态效应,推导了时变的总距突增旋翼的气动响应模型;
(2) 基于以上总距突增的气动响应模型,考虑瞬时地面效应,建立了自转旋翼机跳飞动力学模型;
(3) 搭建了自转旋翼跳飞试验平台,并完成跳飞试验;
(4) 利用跳飞动力学模型,分析了自转旋翼跳飞时,总距突增、地面效应和诱导速度对跳飞性能和旋翼气动特性的影响。
研究目的:
建立简单准确的跳飞动力学模型,分析关键因素(总距突增、地面效应和诱导速度)对跳飞性能和旋翼气动特性的影响,有效预测自转旋翼机的跳飞动力学性能,从跳飞系统设计方面指导自转旋翼机设计。
研究方法:
(1) 根据叶素动量理论和叶素理论,建立时变的总距突增旋翼气动响应模型,将模型应用于NACA试验中直升机跳飞旋翼(与自转旋翼机跳飞旋翼气动环境相同)的气动特性计算,采用数值解法求解;
(2) 在(1)基础上,考虑瞬态地面效应,建立自转旋翼机跳飞动力学模型,并应用到试验样机的跳飞性能计算,采用数值解法求解;
(3) 自主搭建了自转旋翼试验样机跳飞平台,使用编码器采集试验样机的电机和旋翼转速,超声波传感器采集样机离地距离并转换为样机质心的跳飞高度;
(4) 使用三个简化跳飞模型、一个经验跳飞模型和本文跳飞模型计算试验样机跳飞性能,统计各模型计算得到的瞬时跳飞高度均方差(MSE)和最大跳飞高度误差(MHE),两两比较,并逐一与样机跳飞试验的跳飞高度数据对比,定量得出关键参数对跳飞性能的影响;利用本文模型分析了关键参数对跳飞旋翼气动特性的影响;
结果:
(1) 时变的总距突增旋翼的气动响应模型求解NACA试验中的直升机跳飞旋翼气动特性,计算结果与NACA试验数据对比,模型计算准确可信;
(2) 自转旋翼跳飞动力学模型求解试验样机的跳飞性能,并与样机跳飞试验数据对比,模型计算精度超过95%;
(3) 关键因素中,地面效应对跳飞的影响最大,诱导速度模型的影响次之,总距突增气动延迟的影响最小;总距突增对旋翼的诱导速度和拉力的影响与旋翼半径和跳飞时间有关,诱导速度的响应滞后于拉力;地面效应对诱导速度和拉力的影响作用到整个旋翼桨盘,只与旋翼桨盘离地高度有关。
结论:
(1) 本文推导的时变的总距突增旋翼的气动响应模型准确可信;
(2) 建立的自转旋翼跳飞动力学模型对跳飞性能的计算精度高达95%;
(3) 跳飞动力学模型可用于自转旋翼机性能的预测,在快速预测自转旋翼机跳飞性能时,可忽略旋翼的总距突增;
关键词:跳飞;总距突增;地面效应;诱导速度;MSE和MHE