|
Abstract: |
Recently, several approaches have been proposed to discover the causality of the time-independent or fixed causal model. However, in many realistic applications, especially in economics and neuroscience, causality among variables might be time-varying. A time-varying linear causal model with non-Gaussian noise is considered and the estimation of the causal model from observational data is focused. Firstly, an independent component analysis (ICA) based two stage method is proposed to estimate the time-varying causal coefficients. It shows that, under appropriate assumptions, the time varying coefficients in the proposed model can be estimated by the proposed approach, and results of experiment on artificial data show the effectiveness of the proposed approach. And then, the granger causality test is used to ascertain the causal direction among the variables. Finally, the new approach is applied to the real stock data to identify the causality among three stock indices and the result is consistent with common sense. |
Key words: time-varying causal model independent component analysis (ICA) granger causality test causality inference |
DOI:10.11916/j.issn.1005-9113.17130 |
Clc Number:O212.4; TP391.9 |
Fund: |
|
Descriptions in Chinese: |
基于ICA的时变因果模型辨识 陈红霞,冶继民 (西安电子科技大学 数学与统计学院,西安 710126) 创新点说明:1)将已有模型推广为具有时变的因果系数和非高斯噪声的新模型,具有非高斯噪声的时变因果模型具有更加广泛的应用。 2)针对新模型,提出基于ICA的两步估计方法,且与基本ICA模型不同的是,本文中时变因果模型蕴含的是混合矩阵随时间变化的ICA问题,这增加了一定的估计难度,也开拓了新的应用及研究方向。 研究目的: 将已有具有时不变的因果影响系数或者高斯噪声的模型推广为更一般的具有时变因果影响系数和非高斯噪声的因果模型。针对新模型,提出基于ICA的两步估计方法来估计新模型,第一步利用解卷积算法求解卷积混合系数,第二步利用求解时变ICA模型的方法求解系数。最后将新模型与新方法应用于实际问题的估计与求解中。 研究方法: 1)将提出的TVLC模型变形为带噪声的卷积模型; 2)利用解卷积算法估计转化卷积模型的卷积混合系数,将原数据和卷积混合模型的估计结果数据作差得到噪声数据; 3) 对噪声数据利用时变ICA模型的估计方法估计瞬时影响系数,两步综合,得到本文所提模型中的所有影响系数。 4)通过MATLAB软件、R软件、Eviews7软件编程实现,利用人工产生数据验证提出方法的正确性。 结果: 在提出新模型后,提出基于ICA的两步估计方法估计模型中瞬时影响系数和时延影响系数,然后给出仿真验证,仿真实验的人工数据估计过程证明了所提方法的有效性。最后,将模型和方法运用于经济学中的实际股票数据分析研究,得到了三支股票数据间的因果影响强度并给出解释。 结论: 本文所提模型具有时变因果影响系数和服从非高斯分布的噪声变量,在实际中的运用更为广泛。根据模型特点,提出基于混合系数时变的ICA的两步估计方法是本文亮点。从人工数据的模拟实验看出,ICA模型中存在的符号不确定性在时变ICA模型中也存在,但该不确定性不会影响估计效果。 本文所提模型和基于ICA的两步估计方法应用于经济中,得到正确、合理、易于解释的股票间因果影响关系,除经济学之外,所提模型及其估计方法可广泛应用于天气分析、神经系统科学等领域。 关键词:时变因果模型;独立成分分析(ICA);格兰杰因果检验;因果推断 |