Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Dawei Ding,Hui Liu,Yecui Weng,Xiaolei Yao,Nian Wang.Dynamics Analysis of Fractional-Order Memristive Time-Delay Chaotic System and Circuit Implementation[J].Journal of Harbin Institute Of Technology(New Series),2020,27(2):65-74.DOI:10.11916/j.issn.1005-9113.18084.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 952times   downloaded 624times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Dynamics Analysis of Fractional-Order Memristive Time-Delay Chaotic System and Circuit Implementation
Author NameAffiliation
Dawei Ding School of Electronics and Information Engineering, Anhui University, Hefei 230601, China 
Hui Liu School of Electronics and Information Engineering, Anhui University, Hefei 230601, China 
Yecui Weng School of Electronics and Information Engineering, Anhui University, Hefei 230601, China 
Xiaolei Yao School of Electronics and Information Engineering, Anhui University, Hefei 230601, China 
Nian Wang School of Electronics and Information Engineering, Anhui University, Hefei 230601, China 
Abstract:
The integer-order memristive time-delay chaotic system has attracted much attention and has been well discussed. However, the fractional-order system is closer to the real system. In this paper, a nonlinear time-delay chaotic circuit based on fractional-order memristive system was proposed. Some dynamical properties, including equilibrium points, stability, bifurcation, and Lyapunov exponent of the oscillator, were investigated in detail by theoretical analyses and simulations. Moreover, the nonlinear phenomena of coexisting bifurcation and attractor was found. The phenomenon shows that the state of this oscilator was highly sensitive to its initial value, which is called coexistent oscillation in this paper. Finally, the results of the system circuit simulation accomplished by Multisim were perfectly consistent with theoretical analyses and numerical simulation.
Key words:  fractional-order  time-delay  coexisting attractors  coexisting bifurcation  circuit simulation
DOI:10.11916/j.issn.1005-9113.18084
Clc Number:O415.5
Fund:
Descriptions in Chinese:
  

基于分数阶忆阻器的时延混沌系统动力学分析和电路仿真

丁大为,刘慧,翁业翠,姚晓磊,王年

(安徽大学 电子信息工程学院,合肥 230601)

中文说明:为研究系统的非线性动力学,提出一个从相对应的整数阶演变而来的分数阶忆阻器的时延混沌系统。分析了分数阶忆阻器的频率和电特性。研究了实现分数阶忆阻器的单元电路。首先,根据李亚普诺夫间接法,对分数阶忆阻器的时延混沌系统的稳定性进行分析,结果表明:当忆阻系统的分数阶参数达到临界值时,系统失去稳定性,并发生分岔。然后,根据改变系统参数,得到不同系统参数的分岔图表明分数阶忆阻系统发生分岔和混沌行为。为证明分数阶忆阻混沌系统存在混沌行为,给出了系统的时域图、相位图和最大的李亚普诺夫指数图。本文还研究了共存分叉和共存吸引子的非线性现象。该现象表明该振荡器的状态对其初始值非常敏感,本文称之为共存振荡。此外,使用改进的Adams-Bashforth-Moulton方法研究数值模拟。最后,对该时滞混沌电路进行电路仿真,与理论分析和数值模拟的结果一致。

关键词:分数阶;时延;共存吸引子;共存分岔;电路仿真

LINKS